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Abstract

This paper extends the work in Serletis and Shintani [6], Elder and
Serletis [2], and Koustas et al. [5] by examining the empirical evidence
for random walk type behavior in the U.S. stock market. In doing so,
it uses the FORTRAN 95 program developed by Hinich [3] and detects
a statistically signi�cant randomly modulated periodic signal.
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1 Introduction

This paper extends the work in Serletis and Shintani [6], Elder and Serletis
[2], and Koustas et al. [5] by re-examining the empirical evidence for random
walk type behavior in the U.S. stock market. In doing so, it tests the random
walk hypothesis by using a parametric statistical model called Randomly
Modulated Periodicity (RMP), recently proposed by Hinich [3] and Hinich
and Wild [4]. In doing so it uses data on the Dow Jones Industrial Average
over the period from January 3, 1928 to March 15, 2006 � a total of 19,758
observations.
The paper is organized as follows. In Sections 2 and 3 we brie�y discuss

the RMP model for the study of varying periodic signals. In Section 4 we
test for randomly modulated periodicity in the daily Dow Jones Industrial
Average and report and discuss the results. The �nal section provides a brief
conclusion.

2 Randomly Modulated Periodicity

All signals that appear to be periodic have some sort of variability from period
to period regardless of how stable they appear to be in a data plot. A true
sinusoidal time series is a deterministic function of time that never changes
and thus has zero bandwidth around the sinusoid�s frequency. Bandwidth,
a term from Fourier analysis, is the number of frequency components that
are needed to have an accurate Fourier sum expansion of a function of time.
A single sinusoid has no such expansion. A zero bandwidth is impossible in
nature since all signals have some intrinsic variability over time.
Deterministic sinusoids are used to model cycles as a mathematical con-

venience. It is time to break away from this simpli�cation in order to model
the various periodic signals that are observed in �elds ranging from biology,
communications, acoustics, astronomy, and the various sciences.
Hinich [3] introduced a parametric statistical model, called Randomly

Modulated Periodicity (RMP), that allows one to capture the intrinsic vari-
ability of a cycle. A discrete-time random process x(tn) is an RMP with
period T = N� if it is of the form

x(tn) = s0 +
2

N

N=2X
k=1

[(s1k + u1k(tn)) cos(2�fktn) + (s2k + u2k(t)) sin(2�fktn)]
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where tn = n� , � is the sampling interval, fk = k=T is the k-th Fourier fre-
quency, and where for each period the fu11(t1); : : : ; u1;N=2(tn); u21(tn); : : : ; u2;N=2(tn)g
are random variables with zero means and a joint distribution that has the fol-
lowing �nite dependence property: fujr(s1); : : : ; ujr(sm)g and fuks(t1); : : : ; uks(tn)g
are independent if sm + D < t1 for some D > 0 and all j; k = 1; 2 and
r; s = 1; : : : ; N=2 and all times s1 < � � � < sm and t1 < � � � < tn. Finite
dependence is a strong mixing condition � see Billingsley [1].
These time series, uk1(t) and uk2(t), are called �modulations�in the signal

processing literature. If D << N then the modulations are approximately
stationary within each period. The process x(tn) can be written as

x(tn) = s(tn) + u(tn),

where

s(tn) = E[x(tn)] = s0 +
2

N

N=2X
k=1

[s1k cos(2�fktn) + s2k sin(2�fktn)]

and

u(tn) =
2

N

N=2X
k=1

[u1k cos(2�fktn) + u2k sin(2�fktn)]

Thus s(tn), the expected value of the signal x(tn), is a periodic function.
The �xed coe¢ cients s1k and s2k determine the shape of s(tn). If s11 6= 0 or
s21 6= 0 then s(tn) is periodic with period T = N� . If s11 = 0 and s21 = 0,
but s12 6= 0 or s22 6= 0, then s(tn) is periodic with period T=2. If the �rst
k0 � 1 s1k and s2k are zero, but not the next, then s(tn) is periodic with
period T=k0.

3 Signal Coherence Spectrum

To provide a measure of the modulation relative to the underlying period-
icity, Hinich [3] introduced a concept called the signal coherence spectrum
(SIGCOH). For each Fourier frequency fk = k=T the value of SIGCOH is

x(k) =

s
jskj2

jskj2 + �2u(k)
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where sk = s1k+ is2k is the amplitude of the kth sinusoid written in complex
variable form, i =

p
�1, �2u(k) = EjU(k)j2 and

U(k) =
N�1X
n=0

uk(tn) exp(�i2�fktn)

is the discrete Fourier transform (DFT) of the modulation process uk(tn) =
u1k(tn) + iu2k(tn) written in complex variable form.
Each x(k) is in the (0; 1) interval. If sk = 0 then x(k) = 0. If U(k) = 0

then x(k) = 1. The SIGCOH measures the amount of �wobble� in each
frequency component of the signal x(tn) about its amplitude when sk > 0.
The amplitude-to-modulation standard deviation (AMS) is

�x(k) =
jskj
�u(k)

for frequency fk. Thus,

2x(k) =
�2x(k)

�2x(k) + 1

is a monotonically increasing function of this signal-to-noise ratio. Inverting
this relationship, it follows that

�2x(k) =
2x(k)

1� 2x(k)

An AMS of 1:0 equals a signal coherence of 0:71 and an AMS of 0:5 equals
a signal coherence of 0:45.
To estimate the SIGCOH, x(k), suppose that we know the fundamental

period and we observe the signal over M such periods. The mth period is
fx((m� 1)T + tn), n = 0; : : : ; N � 1g. The estimator of (k) introduced by
Hinich [3] is

̂(k) =

s
j �X(k)j2

j �X(k)j2 + �̂2u(k)
,

where

�X(k) =
1

M

MX
m=1

Xm(k)
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is the sample mean of the DFT,

Xm(k) =
N�1X
n=0

x((m� 1)T + tn) exp(�i2�fmtn),

and

�̂2u(k) =
1

M

MX
m=1

jXm(k)� �X(k)j2

is the sample variance of the residual discrete Fourier transform, Xm(k) �
�X(k). This estimator is consistent as M ! 1 and if the modulations have
a �nite dependence of span D then the distribution of

Z(k) =
M

N

j �X(k)j2
�2u(k)

is asymptotically chi-squared with two degrees-of-freedom and a noncentral-
ity parameter �k = (M=N) �2x(k) as M ! 1 � see Hinich and Wild [4].
These �22(�k) variates are approximately independently distributed over the
frequency band when D << N .
If the null hypothesis for frequency fk is that x(k) = 0 and thus its AMS

is zero, then Z(k) is approximately a central chi-squared statistic. Thus Z(k)
can be used to falsify the null hypothesis that x(k) = 0. The tests across
the frequency band are approximately independently distributed tests. The
use of the transformation to the Z(k)�s is the only straightforward way to
put statistical con�dence on the signal coherence point estimates.

4 RMP in the U.S. Stock Market

We use daily observations on the Dow Jones Industrial Average from January
3, 1928 to March 15, 2006 � see Figure 1 for a graphical representation of the
series. We applied the signal coherence spectral analysis to the di¤erences
of the natural logs of the Dow Jones Industrial Average, shown in Figure 2,
using the FORTRAN 95 �Spectrum.for�program developed by Hinich[3] and
available at his web page, www.la.utexas.edu/~hinich.
The spectra were computed using the nonoverlapping frame average method.

The length of the frame is the longest period of the spectra. Its inverse is
called the fundamental frequency of the randomly modulated periodicity.
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The user must specify the frame length. We experimented with a number of
frame lengths and found that a length of 390 days gave a p-value of 0.015
for the Hinich and Wild [4] test for the presence of a randomly modulated
periodicity. There are 50 full frames of length 390 days in the data.
The fundamental frequency only has a signal coherence value of 0.39 with

a coherence probability of 0.709. Thus the fundamental frequency has a lot
of modulation. The �rst harmonic frequency with period 195 days has a
signal coherence of 0.55 with a coherence probability of 0.994. Many of the
higher harmonics have coherence probabilities less than 0.5 and thus are
very unstable. The most stable harmonics are 39 days (probability = 0.967),
26 days (probability = 0.987), 7.6471 days (probability = 0.995), 6.5 days
(probability = 0.980), 5.9091 days (probability = 0.985), and several short
periods less than four days. The signal coherence spectrum is shown in Figure
3 and the coherence probability spectrum is shown in Figure 4.

5 Conclusion

We have applied the signal coherence spectral analysis to the daily returns
series of the Dow Jones Industrial Average, over the period from January 3,
1928 to March 15, 2006. We detected su¢ ciently large modulations, suggest-
ing the absence of opportunities for su¢ ciently large returns after transac-
tions costs.
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Figure 1. (Logged) Dow Jones Industrial Average, 1928-2006
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Figure 2.  Logged First Differences of the Dow Jones Industrial Average
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Figure 3.  Signal Coherence Spectrum of the Daily Dow Jones Industrial Average
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Figure 4.  Signal Coherence Probability Spectrum of the Daily Dow Jones 
Industrial Average 
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