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1 INTRODUCTION 

This paper shows that the Hinich (1982) bispectrum test for gaussianity 

and the Hinich and Rothman (1998) test for time reversibility can be 

used to falsify the null hypothesis that an autoregressive conditionally 

heteroskedastic model (ARCH) of its generalization (GARCH) generates 

nonlinear behavior in the variance of an observed time series. The term 

“falsify” means that the null hypothesis can be rejected with a given size 

using a nonparametric test based on the bispectrum where the data is 

trimmed to control the sizes. Rejecting the null hypothesis implies that 

the ARCH or GARCH model that is estimated from the data is not a 

complete statistical description of the dependence structure in the 

variance of the process. 

Time series models have been widely employed in the literature to 

explain the dynamics of financial time series. Since its introduction 24 

years ago, the applications of Autoregressive Conditional 

Heteroskedasticity (ARCH) model introduced by Engle (1982) or its 

extension Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH) by Bollerslev (1986) in finance have become commonplace (for a 

survey see Bollerslev et al., 1992. This class of models relaxes the 

assumption of the classical linear regression model that the variance of 

the disturbance term is conditionally as well as unconditionally constant. 

Since the GARCH generalization the number of empirical and 

theoretical developments in the field has exploded, with rapid 

development of applications and variants. This popularity is evidenced by 

mailto:hinich@mail.la.utexas.edu


the incorporation of GARCH estimation into major software packages (for 

reviews of GARCH software see Brooks, 1997; McCullough and Renfro, 

1999; and Brooks et al., 2001). 

Let { ( )}nx t  denote an equally spaced sampled time series from a 

stationary random process ( ){ }x t  where tn nτ= . A zero mean 

ARCH/GARCH model for this time series is of the form ( ) ( ) ( ) n n nx t h t e= t  

where { ( )}ne t is a zero mean pure white noise process (i.i.d.) and { ( )}nh t  is 

a positive valued autoregressive moving average process whose inputs 

are lagged e t . For example an ARCH(q) model is of the form 

 and a GARCH(p,q) model is 
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. In most cases it is assumed 

that the e t  have a normal (gaussian) distribution but sometimes the 

assumed distribution is a Student’s t. 

n

The ARCH/GARCH type of non-linear time series model is claimed to be 

the model of a special type of non-linearity in the data generating process 

known as multiplicative non-linearity, or non-linear-in-variance, in 

which non-linearity affects the process through its variance (Hsieh, 

1989). Although these models have been heralded as an accurate 

description of a number of important characteristics of financial data , as 

Hall, Miles and Taylor (1989) note, the ARCH parameterization of the 

conditional variance does not have any solid grounding in economic 

theory, but represents “a convenient and parsimonious representation of 

the data.” Given the importance of these models in econometric time 

series it is important to be able to use a nonparametric statistical tool to 

falsify them. If it turns out that the ARCH/GARCH models lack a certain 

statistical property that has not been exploited then the time series 

community may create new nonlinear models that more accurately 



captures the complexity of the nonlinearity inherent in high frequency 

market data. 

The bispectrum is defined in the next section. Since the  are 

independently distributed it will now be shown that all the bispectral 

values of {

( )2
ne t

( )}nx t  are zero as long as the distribution of the e t  is 

symmetric. The Hinich test for Gaussianity is really a test of the null 

hypothesis that the bispectrum is zero for all bifrequencies and thus if 

the Hinich test rejects the null hypothesis then the ARCH/GARCH 

specification is falsified for any set of model parameters. This point was 

first advanced by Brock (1987) in an unpublished paper. 

( n )

It will also be shown that the bispectrum of any ARCH or GARCH 

process is a real constant (its imaginary part is zero) for any distribution 

of e t  with finite moments. The Hinich-Rothman test of time 

reversibility is really a test for the null hypothesis that the imaginary part 

of the bispectrum is zero for all bifrequencies. Thus if the Hinich-

Rothman test rejects this null hypothesis the ARCH/GARCH 

specification is falsified in a nonparametric manner. 

( n )

The asymptotic properties of these two tests are valid for ARCH/GARCH 

models that have finite moments but the fat tails of especially the 

GARCH processes produce false rejections for moderate and even large 

sample sizes. The definition of the bispectrum is given in Section 2. 

Section 3 covers the estimation of the bispectrum and the large sample 

properties of the test statistics. Section 4 presents a discussion of the 

use of data trimming to control the sizes of the tests. Simulations are 

presented to support validity of trimming to obtain proper test sizes for 

sample sizes common for high frequency financial data. 

2 THE BISPECTRUM 

The bispectrum of a bandlimited random process ( ){ }nx t  is 
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where ( ) ( ) ( ) ( ), + +=x n n rb r s Ex t x t x tn s  is called the bicorrelation for lags r and 

s. The set of positive support of the bispectrum is the triangle 

{ }1 2 1 10 2 ,   ,   of f f f f f< < < + <2 fΩ = / 2o  where of  is the highest frequency 

component of the process (Hinich and Messer, 1995), which is called the 

band limit in the signal processing literature. 

The conditional product ( ) ( ) ( ) ( )| ,+ + < +  n n r n s mE x t x t x t e t m n s  is zero for all 

 and any ARCH or GARCH model since the 0 r s< ≤ ( ) 'n se t  are 

independently distributed, implying that ( ), 0=x sb r  for all r  and 

. Thus 

0≠

0s ≠ ( ) ( ) ( )3/ 2 3  n n1 2, =xB f f E h t e t . The bispectra of any ARCH or 

GARCH process is a real constant for all bifrequencies and thus if the 

Hinich-Rothman test rejects the null hypothesis that the imaginary part 

of the bispectrum is zero for all bifrequencies then the process can not be 

ARCH/GARCH. 

In addition if Ee  for a given ARCH/GARCH model then its 

bispectrum is zero for all bifrequencies. With the zero skewness 

assumption for the e t  then if the Hinich zero bispectrum test rejects 

the null hypothesis then it rejects the ARCH/GARCH model. 

( )3 0nt =

( ) 'n s

The bispectrum estimation method and the test statistics are presented 

in the next section. 

3 BISPECTRAL ESTIMATION 

The spectrum and bispectrum can be estimated using conventional 

nonparametric methods (Hinich and Clay, 1968). I prefer to use the 

frame averaging spectrum estimation method to illuminate the statistical 

issues of bispectrum normalization but the results will hold for any 



method that yields estimates that have similar asymptotic properties to 

the frame averaging method. Details of estimating the bispectrum from a 

sample of discrete-time observations of the process and the sampling 

properties of the estimate are presented in Brillinger (1965), Hinich 

(1982), Brockett et. al. (1988), Hinich and Patterson (1989) and (1992), 

and Hinich and Wolinsky (1988) and (2005). 

Consider a sample ( ) ( ){ }1 ,..., Nx t x t  where kt kδ= . This sample is 

partitioned into [ ]/P N L=  non-overlapping frames of length Lδ  where the 

last frame is deleted if it has less than L observations. To simplify 

notation normalize the time unit by setting 1δ = . The resolution 

bandwidth is then 1
1
L

= /P Nf . If L=  then the last undersized frame is 

not used to estimate the bispectrum. 

The pth frame is ( ) ( ) ( )( ) ( )1 ,..., } { 1 1 ,..., }p p{x x L x p L x pL= − +

( ) ( )

 The discrete 

Fourier transform of the pth frame is 
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p pt
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 and 

the periodogram of the pth frame is ( ) ( )21 1
p p ( )pX k X k

L L
X k= − . Since 

 the frame-averaged estimate of the spectrum at frequency N LP≈ k
kf
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=  
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Then ( ) ( ) 1ˆ
k kE S f S f O

L
   = +     

 where the error term of order 1/L is due to 

the frame windowing of the spectrum. The variance of the estimate for 

large values of L and P is ( )kS f21
P

. 

The frame-averaged estimate of the bispectrum at the bifrequencies 

( )1 2
,k kf f  is 
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The normalization of the estimated bispectrum is 
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This normalization standardizes the variance of the bispectrum estimate 

using the estimated variance in place of the true variance. Let 

( ) ( ) ( ) ( ) (1 2 1 2 1 2 1 2

1
2,

−
 Γ = + k k k k k k k k ),f f S f S f S f f B f f  .Let  where the 

bandwidth parameter e is in the interval 0

eL N=

0.5e< < . Then the real and 

imaginary parts of each ( ) ( )1 21 2

1 2 ˆ2 ,− + , Γ −Γ fe
k kN f f

N →∞

k kf  are asymptotically 

independent  gaussian variates with zero means and unit variances as 

 (Hinich, 1982). Moreover the ( )1 2
,k kΓ̂ f f  are asymptotically 

independently distributed across the principal domain of the 

bifrequencies. The smaller the value of e, the fewer the number of 

bifrequencies and thus the smaller the power the tests but the larger the 

number of frames and thus the faster the convergence to the asymptotic 

sampling properties. 

Suppose that the null hypothesis is that the imaginary part of the 

bispectrum is zero and thus ( )1 2
Im , 0Γ =k kf f

( )1 2

2
, 

 k kf f

 for all bifrequencies, which is 

true for ARCH/GARCH models. The Hinich-Rothman TR test statistic is 

the sum S  of  over the L  bifrequencies in the TR
1 2 ˆ2 Im− + ΓeN 2 /16



support set. This distribution of this sum is approximately central chi-

squared with 2 16=M L

) 0=

( )3
nEe t =

 degrees of freedom for large N. 

Now suppose that the null hypothesis is that the bispectrum is zero and 

thus  for all bifrequencies, which is true for ARCH/GARCH 

models with  as it is true for a gaussian process. The Hinich 

(1982) test statistic is the sum S  of 

( 1 2
,Γ k kf f

0

0 ( )1 2

2
1 2 ˆ2 ,− + Γe k kN f f  over the  

bifrequencies and its large sample distribution is central chi-squared 

with  degrees of freedom. For both tests if the null hypothesis is false 

then the statistics have noncentral chi-square distributions and the tests 

are one sided. 

2 /16L

2M

The program BISPEC is available on my website 

(www.gov.utexas.edu/hinich). This program transforms the tests statistic 

using the cumulative distribution function of the test statistics under the 

appropriate null hypothesis. For example the Hinich zero bispectrum test 

statistic is Y F  where (0 2 0M S= ) ( )2MF s  is the cdf of a central chi–square 

density with  degree of freedom. Thus Y  has a uniform 2M 0 ( )0,1  

distribution under the null hypothesis. The null hypothesis is rejected if 

the p-value (1 unif )0p F= − Y , where  is the cdf of the uniform unifF ( )0,1  

distribution, is deemed to small by the analyst. 

The Hinich-Rothman TR test statistic is ( )TR M TRS=Y F . The null 

hypothesis is rejected if ( )1 unif TRp F Y= −  is deemed too small. 

The sampling properties of the Hinich bispectral based tests of 

normality and linearity as well as the Hinich and Rothman TR test are 

large sample results based on the asymptotic normal distribution’s mean 

and variance. The validity of any asymptotic result for a finite sample is 

always an issue in statistics. The rate of convergence to normality 

depends on the size of the cumulants of the observed process. 
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All data is finite since all measurements have an upper bound to their 

magnitudes. If the data is leptokurtic as is the case for stock returns and 

exchange rates then the cumulants are large. Trimming the tails of the 

empirical distribution of the data is an effective approach to limit the size 

of the cumulants in order to get a more rapid convergence to the 

asymptotic distribution. Trimming of time series in order to improve the 

validity of the use of the asymptotic properties of the test is discussed 

next. 

4 TRIMMING TIME SERIES DATA 

Trimming data to make sample means less sensitive to outliers has 

been used in applied statistics for years. Trimming is a simple data 

transformation that make statistics based on the trimmed sample more 

normally distributed. Transforming data is a technique with a long 

pedigree, it can be dated back at least to Galton (1879) and McAliser 

(1879) at the dawn of modern statistics. Subsequently, Edgeworth 

(1898), and Johnson (1949), among others, have contributed to our 

understanding of this technique for examining data. 

Suppose one wants to trim the upper and lower κ /2 %  values of the 

sample { ( ) ( )}1 ,..., Nx t x t . Order the data and find the κ /200  quantile  

and the 1  quantile  of the order statistics. Then set all 

sample values less than the 

κ /200x

κ− /200 κ−1 /200x

κ /200

200

 quantile to  and set all sample 

values greater than 1  quantile to 

κ /200x

κ− / κ−1  quantile. The 

remaining (  data values are not transformed. 

/200

)κ−100 %

The bicorrelations of the trimmed sample are zero for all lags using the 

same conditioning argument as was used to show that the bicorrelations 

of a ARCH/GARCH are zero. Thus the imaginary part of the bispectrum 

of the trimmed sample is zero for all bifrequencies. Also the real part is 



zero for all bifrequencies if ( )3 0nEe t = . Simulations will be presented to 

determining the trimming level for three GARCH(1,1) models and two 

ARCH(1) models from the econometric literature. 

5 SIMULATIONS USING GARCH(1,1) AND ARCH(1) MODELS 

Two GARCH(1,1) models and two ARCH(1) models were used in the 

simulations. The first is the GARCH(1,1) model in Example 2 of Horowitz, 

et. al (2006) where 0 1 10.001,  0.05,  0.9α α β= = =

κ =10%

0 1 10.0107613,  0.153134,  0.805974

 using the notation 

above. This model is called GARCH 1. 

Using a number of different trimming levels simulations were run using 

this model with 50,000 replications and a sample size of N = 50,000. 

Twelve quantiles (0.50, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 

0.99, 0.995, and 0.999) were estimated from the 50,000 replications to 

determine how close they were to the large sample quantiles of the two 

statistics computed from trimmed series using different trimming levels. 

The top three quantiles are the important ones since each test rejects the 

null hypothesis if the test statistic is close to one. 

Two values of the bandwidth parameter were used; e = 0.33 and e = 0.4. 

The differences between the quantiles computed for the two bandwidth 

parameters were small and so only the e = 0.4 will be shown. The results 

for a trimming level of  for the two tests using the GARCH 1 

model are shown in Figures 1 and 2. The top three sample quantiles are 

very close to their true values for this trimming level. 

The sample quantiles for the two tests at the same trimming level are 

nearly the same for all the simulations that I ran. Thus only the TR test 

results will be shown for the following GARCH and ARCH models. 

Brooks et.al. (2001) use the following GARCH(1,1) model parameters as 

a benchmark for their comparison of econometric software packages: 

. The result for a trimming α α β= = =



level of  of the simulations of this model called GARCH 2 for the 

TR is shown in Figure 3. The fat tails of this model are larger than for 

GARCH 1 and thus it takes more trimming to get sizes that match the 

size derived from the asymptotic sampling theory. 

κ =15%

x

( )( )2 expn =

( )( )2nt =

To test trimming for ARCH models two ARCH(1)’s used by Becker and 

Hurn (2004) were simulated. The ARCH 1 parameters are 0 1α =  and 

1 0.8α = . The ARCH 2 parameters are 0 1α =  and 1 0.5α = . The result for 

a trimming level of  for ARCH 1 is shown in Figure 4. For the 

ARCH 2 model a  trimming is sufficient to yield proper sizes for 

the tests (Figure 5). 

κ =10%

= 7%κ

The power of the bispectrum test for trimmed output of a new type of 

nonlinear model is presented in the next section. 

6 DETECTING A NONLINEAR AR(2) PROCESS 

Consider the nonlinear AR(2) model 

 ( ) ( )( ) ( ) ( )( ) ( ) ( )1 2 1 2 2 2n n n n nt a x t x t a x t x t u tσ− − − −+ + =

( ) ( ) ( ) ( )( )( )2 2 2 3 2 4 2
2 2 3 4 51  ,c n c n c n c na x t c x t x t x t x tδ δ δ δ− − − − −− + + + +

( )( )

 (4.1) n

where 

 (4.2) 

(22 cos ( ) ( ) ( ) ( ))2 2 2 3 2 4 2
1 2 2 3 4 52 1n f n f n f n f na x a x t f x t x t x t x tπ δ δ δ δ− − − − − −− + + + +  

A simulation with 50,000 replications and N = 50,000 was run using this 

model for the parameter values c = 0.2, f = 0.4, δc = 0.01, and δf = 1.0. A 

section of the output from the model for these parameters is shown in 

Figure 6. Using a trimming level of  the simulated power of the 

time reversibility bispectrum test is  for a significance level of 

. The power for a significance level of  is . This 

high power is somewhat surprising since the sample skewness of the 

κ =15%

91.43β =

0.837β =1%α = 0.1%α =



trimmed output is 0.0028γ =

=15%

. The sample quantiles are shown in Figure 

7. 

7 INTRADAY STOCK RETURNS EXAMPLE 

The two bispectrum based tests were computed for a times series of 

intraday rates of return of Coca Cola (NYSE symbol KO) for the period 

from January 2, 1980 to August 30, 1985. This data file was one of thirty 

returns analyzed for nonlinear structure by Hinich and Patterson (1989). 

These rates of return were constructed from the actual trade prices by a 

method that produced unaliased ten minute averages for each trading 

day. There are 36 such aggregated rates for each trading day yielding 

51,585 points. The frame length used was L = 72 implying an exponent 

value e = 0.39. Thus there the number of full frame is 716 and the actual 

sample size used was N = 51,585. 

The p-values of the test were computed to six decimal places. For a 

trimming level of  the p-value of the zero bispectrum test was 

 and the p-value of the TR test was 

κ

0.000000p = 0.000003p = . The tests are 

still statistically significant for a trimming level of κ = 25%  since the p-

values were 0.000001  for the zero bispectrum test and  for the TR 

test. 

0.001383

8 CONCLUSION 

Data trimming has been shown to control the distortion of fat tailed 

time series on the sizes of the zero bispectrum tests that can be used to 

falsify ARCH/GARCH models in a nonparametric fashion. The results 

presented in this paper show that the trimming level depends on the 

nature of the model used. How is a user to determine the proper 

trimming level to use the bispectrum based tests to see if a fitted ARCH 

or GARCH is falsified? One way is to use my simulation program 



SIMARCH that I used for the simulations used for this paper. The 

program source code and its executable are in the folder CUMSPEC on 

my webpage. The folder also contains the bispectrum program. 
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Figure 1 

 GARCH 1    Time Reversibility Test  -  10% Trimming  e = 0.4   N =50,000
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GARCH  2   Time Reversibility Test  -  10% Trimming  e = 0.4  N = 50,000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

Quantile Number

Pr
ob

ab
ili

ty

Quantiles Sample Quantiles

Figure 2 



ARCH 1  Time Reversibility Test   -   5%  Trimming  e = 0.4  N = 50,000
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Figure 3 



ARCH 2  Time Reversibility Test   -    3% Trimming  e = 0.4  N = 50,000
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Figure 4 



Nonlinear AR(2) Process
Damping = 0.2  Frequency = 0.4ω  δc  = 0.01  δ f  = 1.  σ = 0.5
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Figure 5 



Nonlinear AR(2)  Time Reversibility Test  -  15% Trimming  Model    N =50,000
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Figure 6 
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