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ABSTRACT 

The purpose of this article is to investigate the ability of bandpass filters 

commonly used in economics to extract a known periodicity. The specific 

bandpass filters investigated include a Discrete Fourier Transform (DFT) 

filter, together with those proposed by Hodrick and Prescott (1997) and 

Baxter and King (1999). Our focus on the cycle extraction properties of 

these filters reflects the lack of attention that has been given to this issue 

in the literature, when compared, for example, to studies of the trend 

removal properties of some of these filters.  The artificial data series we 

use are designed so that one periodicity deliberately falls within the 

passband while another falls outside. The objective of a filter is to admit 

the ‘bandpass’ periodicity while excluding the periodicity that falls 

outside the passband range. We find that the DFT filter has the best 

extraction properties.  The filtered data series produced by both the 

Hodrick-Prescott and Baxter-King filters are found to admit low 

frequency components that should have been excluded.   

 

Keywords: business cycles, bandpass filter, cycle extraction, Discrete 

Fourier Transform (DFT). 
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1       INTRODUCTION 

There has been considerable attention paid to the design of various 

filters to extract business cycle components from macroeconomic time 

series. Two of the best-known are the Hodrick-Prescott (HP) and Baxter-

King (BK) filters – see Hodrick and Prescott (1997) and Baxter and King 

(1999), respectively. These filters share a common property that they are 

implemented in the time domain. This contrasts with the approach 

commonly found in mathematical statistics and signal processing where 

cycle extraction algorithms are implemented in the frequency domain 

using Finite Fourier Transforms (FFT) methods. 

While much attention has been given in the economics literature to 

establishing the properties of the two above-mentioned time domain 

filters - particularly with regard to their ability to make the time series 

data stationary but less attention has been given to their efficacy in 

successfully extracting cyclical components. 

In this article, we investigate the ability of selected bandpass filters 

commonly used in economics to extract a known deterministic periodicity 

while, at the same time, requiring the filter to pass over another 

periodicity, deliberately designed to fall outside the passband.  This is a 

simple task that we would reasonably expect any filtering algorithm to be 

able to successfully accomplish. 
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We investigate this capability both when the periodicity is purely 

deterministic and when it is embedded in stationary mixing noise.  Here, 

we ignore the issues and implications arising when the periodicity is 

embedded in a trend process.  If the filters cannot easily remove the 

appropriate components when the process is purely deterministic, or 

embedded in stationary Gaussian noise, then it is not likely to be 

successful when embedded in a trend process, irrespective of the ability 

of the filter to de-trend the underlying data. 

2 THE DISCRETE FOURIER TRANSFORM 

A linear filter, a convolution of the filter's impulse response and input 

signal, is a product of the complex gain of the filter and the Fourier 

transform of the input series ( )x t . For a finite sample of a discrete-time 

series, the appropriate Fourier transform is the Discrete Fourier 

Transform (DFT). 

Suppose that we have a finite length discrete time series ( ){ }nx t  where 

nt nτ= , τ  is the sampling interval and the record length is T Nτ= . In the 

discussion below we set 1=τ  to suppress the time unit, use N and T 

interchangeably and set the first observation index to zero. The DFT can 

be viewed as mapping a sequence of N (or T) data points 

( ) ( ) ( ){ }0 , 1 , , 1x x x N −…  in the time domain to a set of N equally spaced 

ordinates in the frequency domain at points k
kf
N

=  termed Fourier 
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frequencies. The (time to frequency) DFT is the vector of complex 

variables ( ) ( ) ( ){ }0 , 1 , , / 2x x xA A A N…  defined by 

( ) ( )
1

0
exp 2π

−

=

 = − 
 

∑
N

x
n

knA k x n i
N

,                                                                   (1) 

where exp 2 cos 2 sin 2π π π     = +     
     

kn kn kni i
N N N

 and 1i = − . Since the 

observations are real variables and ( )exp 2 1π =i n  for all n, 

( ) ( ) ( )*A N k A k A k− = − =  where the asterisk denotes the complex conjugate 

of ( )A k . Thus the highest Fourier frequency index is [ ]/ 2 / 2N N=  if N is 

even and [ ] ( )/ 2 1 / 2N N= −  if N is odd. 

The complex representation of a sinusoidal periodicity whose period is N 

is of the form ( ) exp 2 ok nx n c i
N

π θ  = +  
  

, where c is the amplitude of the 

sinusoid and θ  is its phase shift. It follows from the algebra of these 

complex variables that the Fourier transform of this complex sinusoid is 

( ) ( ) ( )exp 2  if  and 0x o xA k c i k k A kπθ= = =  otherwise. The unit amplitude 

vector exp 2π  
  

  
ok ni
N

 for a given integer ok  is called a phasor of 

frequency /o of k N=  (Bracewell (1978, p. 21)). The DFT values are 

efficiently computed using the mixed radix Fast Fourier Transform (FFT) 

as long as N is not a large prime number. 
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The inverse (frequency to time) DFT, producing the discrete-time filtered 

series ( )y n  is 

( ) ( )
1

0

1 exp 2
N

k

kny n A k i
N N

π
−

=

 =  
 

∑ .                                                                  (2) 

Thus the data vector ( )ny  is a dot product of the Fourier transform’s 

complex amplitudes and the vector of phasors for time index n. The 

difference between adjacent Fourier frequencies is determined by the 

fundamental frequency 1
1f
N

= , which is the upper limit for resolving 

cycles in the finite segment of the time series. There is no way to extract 

more information about cycles from the sample of time length T given the 

mathematical fact of equation (2). 

The use of the Fourier representation for bandpass filtering a time 

series is shown in the next section. Our approach is similar to the 

convolved bandpass filter method of Iacobucci and Noullez (2004, 2005) 

in that we also operate directly in the frequency domain. 

3 BANDPASS FILTERING A TIME SERIES 

Assume that we wish to analyze the periodic nature of the time series in 

the passband ( )1 2
,k kf f . We therefore want to filter out the Fourier 

frequencies whose indices are less than 1k  and greater than 2k . A simple 

way to bandpass the input using the FFT is to zero out all the complex 
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FFT values outside the passband. This is accomplished by applying the 

following ideal frequency response at the discrete set of Fourier 

Frequency ordinates 

( ) ( )1 21, ,
0,
if k k k

k
otherwise

ψ
 ∈

= 


.                                                                           (3) 

 Applying (3) to (2), the filtered time series is 

( ) ( ) ( )
2 1

1 2

1 exp 2 exp 2
k N k

n k k
k k k N k

kn kny t A f i A f i
N N N

π π
−

= = −

    = +    
    

∑ ∑� .                           (4) 

The complex amplitudes of the time series in the passband ( )1 2
,k kf f  and 

their complex conjugates are exactly the same as for the original time 

series. 

The filtered data series ( )ny t�  in (4) will be generated by the following 

sequence of operations: 

1) apply the time to frequency DFT using (1) to the source data series 

( )nx t ; 

2) apply the ideal frequency response (3) to each Fourier Frequency 

ordinate of the frequency response function obtained from the first step; 

and 

3) generate the filtered series ( )ny t�  by applying the inverse (frequency to 

time) DFT using (2) to the output from the previous step. 
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The ideal frequency response function of the simple DFT bandpass filter 

yields zero values only at the Fourier frequencies in the stopband and 

have values equal to unity at all Fourier frequencies falling within the 

passband. This result can be formally demonstrated by applying the 

above DFT filter algorithm to a unit impulse sequence 

( ) ( ) ( ) ( ){ }1,...,2,1,0 −Nxxxx  = { }0,...,0,0,1 . We adopt a sample size of 120 

observations corresponding, for example, to 30 years of quarterly data 

and a passband of (6,1.5) years or equivalently (24,6) quarters.  In terms 

of frequency (or inverted period), the passband is given by (1/24,1/6) = 

(0.042,0.167). 

The frequency response is depicted in Figure 1 and is derived by 

applying (1) to the unit impulse series and applying the ideal frequency 

response in (3) at the Fourier frequency ordinates (defined by the ‘dot’ 

points in Figure 1).  This operation is implemented in the frequency 

domain and it is evident from inspection of Figure 1 that the ideal 

frequency response outlined in (3) is synthesized at the Fourier frequency 

ordinates.  It should be noted that while the curve in Figure 1 appears to 

be continuous, the frequency response function is only strictly defined at 

the discrete Fourier frequency ordinates themselves. 

Figure 1 about here. 

The application of the inverse DFT (2) to the discrete ideal frequency 

response outlined in Figure 1 is documented in Figure 2. This figure 
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contains a plot of the resulting Dirichlet function, which is symmetrical 

about N/2, i.e. data point 60 in Figure 2. Once again, this function is 

strictly defined only at the discrete data points represented by the “dots” 

in Figure 2.  It is not a continuous function in time. 

Figure 2 about here.  

The theory underpinning Fourier analysis is based on the concept of 

stationary time series.  However, most economic time series have strong 

trends. Therefore, it is crucial to establish what mechanism 

(deterministic or stochastic) is generating the trend and propose actions 

to remove the trend prior to performing any DFT filtering operation.  We 

assume that the data has been rendered stationary. It should also be 

noted that in the context of the artificial data simulated in later sections 

of this article, this is the case by construction. 

The two other filters considered in this paper are those of Baxter-King 

(BK) and Hodrick-Prescott (HP).  Because these filters are well known, we 

refer interested readers to the seminal articles by Baxter and King (1999) 

and Hodrick and Prescott (1997). Other useful references include King 

and Rebelo (1993), Cogley and Nason (1995), Pedersen (2001) and 

Iacobucci and Noullez (2004,2005).  It should be noted that we employ 

the band-pass version of the Hodrick-Prescott filter proposed in 

Iacobucci and Noullez (2004, 2005). Specifically, we choose a value of λ  

(=215.32) which passes cycles of 6 years or less followed by an 

application in which a value of λ  (=1) is chosen that will pass cycles of 
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1.5 years or less assuming quarterly data.  To extract cycles of 6 to 1.5 

years, we then subtract the second HP filtered series from the first HP 

filtered series - see Iacobucci and Noullez (2004, p. 18) for further 

details.1 

4 SIMULATION MODEL 

We wrote a FORTRAN 95 program to conduct the reported simulations. 

In general terms, the artificial data model can be viewed as a periodic 

process that can be deterministic or embedded in stationary Gaussian 

noise.  ’Complete’ periodicity is defined as the sum of two orthogonal 

periodicities.  The first is a low frequency periodicity that is deliberately 

designed to fall outside the chosen passband, while the second 

periodicity is designed to fall within the passband.  We adopt the same 

parameter settings that were outlined in relation to Figure 1 in the 

previous section.  Specifically, the sample size is 120 and the passband 

is defined to be (0.042, 0.167). 

Recall that the objective of the bandpass filtering exercise is to admit 

any periodicities falling within the passband while passing over any 

                                       
1 The FORTRAN code for both the HP and BK Filters was kindly provided by Houston 

H Stokes, Department of Economics, University of Illinois at Chicago. 
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periodicities falling outside the passband range.  Formally, we define the 

low frequency periodicity as 

( ) ( )( )10*2sin* 11 += tfamptxl π ,                                                                   (5) 

and the ‘bandpass’ periodicity is defined as 

( ) ( )( )4*2cos* 22 −= tfamptxb π ,                                                                   (6) 

where 1amp  and 2amp  are amplitude parameters while 1f  and 2f  are 

frequency parameters. The complete periodicity can be represented by 

( ) ( ) ( ) ( )ttxtxtx bl ε++= ,                                                                             (7) 

where ( )tε  is a stationary random process. In this article ( )tε  can take 

the following forms: 

( ) 0=tε ,                                                                                               (8)a 

where ( )lx t , ( )bx t  and ( )x t  are deterministic periodic processes; or 

( ) ( )tut =ε ,                                                                                            (8)b 

where ( )tu  and ( )tε  are stationary Gaussian noise processes, ( )x t  is a 

stochastic periodic process while both ( )lx t  and ( )bx t  are deterministic 

periodic processes. 

Figures 3-4 show plots of the artificial data series corresponding to the 

deterministic model (8)a for the true low frequency and bandpass 

periodicities obtained from applying equations (5) and (6) with two 
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particular parameter settings for (6).  The particular parameter settings 

associated with both equations are listed in each figure’s caption. It 

should be noted that the true low frequency periodicity given by 

025.01 =f  is perfectly synchronized with the Fourier frequency ordinate 

0.025 in the low frequency region of the stopband – see Figure 3. As 

such, the true low frequency periodicity is both a sub-multiple of the 

series length and a harmonic of the fundamental frequency. 

Figure 3 about here. 

The different parameter settings adopted in (6) for the true ‘bandpass’ 

periodicity reflect our desire to examine the implications on filtering of 

two specific circumstances. The first corresponds to the situation when 

the true ‘bandpass’ periodicity is perfectly synchronized with a Fourier 

frequency ordinate in the passband.  In this case, the true ‘bandpass’ 

periodicity is also a harmonic of the fundamental frequency. The second 

circumstance is when the true ‘bandpass’ periodicity lies between two 

adjacent Fourier frequency ordinates in the passband. In this particular 

case, the true periodicity is not a sub-multiple of the series length or a 

harmonic of the fundamental frequency.  

Data series corresponding to the perfectly synchronized and 

unsynchronized cases are listed in Figure 4.  In the synchronized case, 

the 2f  parameter is set to 0.0667, which corresponds to a specific 

Fourier frequency ordinate in the passband.  In the unsynchronized 
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case, a parameter setting for 2f  of 0.0625 was adopted that, by design, 

falls half way between the two adjacent Fourier frequency ordinates of 

0.0583 and 0.0667. In Figure 4, the unsynchronized data series is 

denoted as [xb(t): f2 = 0.0625] while the synchronized data series is 

denoted as [xb(t): f2=0.0667], respectively. 

Figure 4 about here.  

Plots of the two complete deterministic data series, corresponding to (7)-

(8)a, are documented in Figure 5.  The complete deterministic periodicity 

for the unsynchronized case is presented [i.e. the x(t): f2=0.0625 data 

series] together with the synchronized case [i.e. the x(t): f2=0.0667 data 

series]. 

Figure 5 about here.  

The time to frequency DFT in (1) is applied to the respective ‘input’ data 

series ( )ntx  outlined in Figure 5. This is in accordance with the first stage 

of the DFT filter algorithm, outlined in the previous section.  This data 

also serves as the source input data series to which both the BK and 

bandpass version of the HP filter are applied.  The data series presented 

in Figure 4 are the respective targets of each filter in the next two 

sections.  The goal of the bandpass filtering operations applied to data 

generated by model [(7)-(8)a] (i.e. the data presented in Figure 5) is to 

produce a filtered data series which either coincides exactly 
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(synchronized case) or closely approximates (unsynchronized case) the 

data series depicted in Figure 4. 

The ‘input’ data associated with the stochastic model [(7)-(8)b] is 

presented in Figure 6 for particular choices of parameter 2f  in (6), 

corresponding to the synchronized and unsynchronized cases, 

respectively.  Specifically, the complete stochastic periodicity (7) for the 

unsynchronized case is presented in Figure 6 [i.e. the x(t): f2=0.0625 

series] together with the synchronized case [i.e. the x(t): f2=0.0667 

series]. This data is the source input data to the various bandpass filters 

investigated.  In the case of model [Eq (7)-(8)b], the target ‘bandpass’ 

periodicity is still the deterministic data series documented in Figure 4.  

However, it should be noted that the filtered data series no longer 

reproduces the target data series exactly because the input data is no 

longer purely deterministic. We expect the filtered data series to broadly 

track the periodic structure of the target data series documented in 

Figure 4. 

Figure 6 about here. 

5 RESULTS ASSOCIATED WITH THE SYNCHRONIZED 

DETERMINSTIC PERIODIC MODEL (7)-(8)A: EQ (6): F2 = 0.0667 

In this section, we investigate the ability of the bandpass filters to 

extract the deterministic ‘bandpass’ cycle that is perfectly synchronized 

with a Fourier frequency ordinate in the passband.  The testing 
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procedure involves the application of the bandpass filters to the artificial 

‘synchronized’ data series presented in Figure 5. Figure 7 contains a plot 

of the results from the application of the DFT filter.  The artificial data 

series associated with the true ‘bandpass’ periodicity (6) and the 

bandpass filtered data series from the DFT filter are displayed together.  

Because of the perfect synchronization of the true ‘bandpass’ periodicity 

and the Fourier frequency ordinate 0.0667, then, if the bandpass filtering 

operation has been successful, the two data series should coincide 

exactly.  In fact, it is apparent from inspection of Figure 7 that this 

occurs – the filtering algorithm has successfully extracted the 

deterministic cycle corresponding to the perfectly synchronized 

‘bandpass’ periodicity. 

Figure 7 about here.  

In order to confirm that the DFT filter operation has ignored the low 

frequency periodicity contained in (7) [subsequently generated by (5)], we 

make use of the periodogram of the bandpass filtered data series.  This is 

calculated as the squared modulus (or square of the absolute value) of 

the complex variable ( )kAx  determined from (1) for each Fourier 

frequency k , divided by the number of sample points .N  If the low 

frequency cycle has been expunged from the filtered data series, then 

there should be no ‘power’ (i.e. no non-zero value) evident at the low 

frequency ordinate (0.025) in the periodogram of the filtered series.  The 
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periodogram of the DFT filtered data series, together with the 

periodograms of the other bandpass filtered data series are presented in 

Figure 8. The periodogram results for the DFT filter is depicted by the 

‘DFT’ series. 

Figure 8 about here. 

Examination of Figure 8 indicates that, in the case of the DFT filtered 

data, the low frequency component has been successfully expunged from 

the bandpass filtered data series – there is no power corresponding to 

Fourier frequency ordinate 0.025.  In fact, the only power corresponds to 

the spike at Fourier frequency ordinate 0.0667 reflecting the perfect 

synchronization with the true ‘bandpass’ periodicity generated by (6).  

 The results of applying the bandpass HP filter to the data series are 

documented in Figure 9.  Recall that we adopt the same values for λ  as 

cited in Iacobucci and Noullez (2004, p.18)) – namely, 3225.215=lowλ  and 

1=highλ . It should also be noted that, in this Figure, we have lost 16 data 

points from the start and end of the data series because the results from 

the BK filter are also represented in this Figure – the data series is now 

defined from data points 17 to 104 instead of 1 to 120. Once again, the 

artificial (target) data series associated with the true ‘bandpass’ 

periodicity (6) is included as a point of reference. 

Figure 9 about here. 
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It is evident from inspection of Figure 9 that the bandpass HP filtered 

data series, [i.e. the ‘BPHP’ series], does not reproduce the exact pattern 

of the target ‘bandpass’ periodicity generated from (6).  As such, the 

filtering operation has induced distortions and cannot be viewed as 

successfully extracting the true ‘bandpass’ periodicity.  This result 

contrasts with the outcome depicted in Figure 7 in relation to the DFT 

filter. 

The cause of this distortion can be found by inspecting the periodogram 

of the HP filtered data series presented in Figure 8 – [i.e. the ‘BPHP’ 

series]. Some leakage from the low frequency periodicity is apparent in 

the periodogram of the HP filtered data series.  The power associated 

with Fourier frequency ordinate 0.025  clearly falls outside the passband 

range of (0.042,0.167).  The other key feature is the noticeable spike at 

Fourier frequency ordinate 0.0667.  However, the power at this ordinate 

is smaller than that associated with the DFT filter, reflecting the leakage 

associated with the presence of the low frequency periodicity in the data.   

 The results obtained from application of the BK filter to the artificial 

data series are also outlined in Figure 9 – [i.e. the ‘BK(16)’ series].  We 

followed the recommendations in Iaccobucci and Noullez (2005, p87) 

concerning filter resolution and chose a number of MA lags 

corresponding to K=16 (in terms of Iaccobucci and Noullez’s notation) 

thus ensuring that the length of the filter is greater than the longest cycle 

we wish to extract (of 24 quarters). 
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It is apparent from examination of Figure 9 that the filtered data series 

obtained from the BK filter does not reproduce the exact pattern of the 

target bandpass periodicity generated by (6).  In common with the 

bandpass version of the HP filter, the BK filter has also generated some 

distortions although, overall, these are smaller than those associated 

with the bandpass HP filter. 

The cause of the distortion can, once again, be found by inspecting the 

periodogram of the BK filtered data series documented in Figure 8 – [i.e. 

the ‘BK’ series].  The extent of the leakage appears to be marginally less 

compared with the bandpass HP filter. However, the power at frequency 

0.0667 seems to be comparable. To summarize, the DFT algorithm is 

superior in extracting the true ‘bandpass’ periodicity.  The DFT filter is 

the only one that can completely extract the target (bandpass) 

periodicity.  The results reported in this section were obtained for a 

deterministic periodic data series in which the true ‘bandpass’ periodicity 

was constructed to be perfectly synchronized with a Fourier frequency 

ordinate in the passband. However, it is possible that this is not the case 

in practice. 

6 RESULTS ASSOCIATED WITH THE UNSYNCHRONIZED 

DETERMINSTIC PERIODIC MODEL (7)-(8)A: EQ (6): F2 = 0.0625 

In this section, we investigate the ability of the various bandpass filters 

to extract a true deterministic ’bandpass’ cycle which is not synchronized 
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with any Fourier frequency ordinate in the passband.  The test 

procedure, once again, is to apply the various bandpass filters to the 

‘unsynchronized’ artificial data series presented in Figure 5 and examine 

the extent to which the filtered data series coincides with the 

‘unsynchronized’ (target) ‘bandpass’ data in Figure 4. Recall from Section 

4 that, in constructing the true ‘bandpass’ periodicity using (6) for the 

unsynchronized case, we adopted a value for parameter 2f  of 0.0625, 

which was designed to fall half way between the adjacent Fourier 

frequency ordinates 0.0583 and 0.0667.  As such, the true ‘bandpass’ 

periodicity falls half way between the two Fourier frequency ordinates 

cited above. However, the DFT for the input data series is only defined at 

the Fourier frequency ordinates themselves.  Therefore, the true 

periodicity must be ‘smeared’ between the Fourier frequency ordinates 

that border the true periodicity. 

  In general, if the true periodicity falls between two Fourier frequency 

ordinates but is closer to one ordinate than the other, more of the 

contribution of the true periodicity will go to the closer Fourier frequency 

ordinate. If the true periodicity is approximately half way between the 

two Fourier frequency ordinates, then around half of the true 

periodicities contribution will go to each ordinate.  Hence, the situation 

we deal with here, where the true periodicity falls half way between two, 

could be viewed as a worst case scenario in terms of possible deviations 

from the results cited in the previous section. 
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Figure 10 contains plots of the periodograms of the filtered data series 

obtained from application of the filters to the ‘unsynchronized’ data 

series documented in Figure 5. 

Figure 10 about here. 

The first thing to note in relation to the periodogram of DFT filtered 

data, (i.e. the “DFT” series), is that the spike associated with the 

synchronized case outlined in Figure 8 at frequency 0.0667 has 

disappeared because the true periodicity is no longer synchronized with 

Fourier frequency ordinate 0.0667. Instead, in Figure 10 the true 

periodicity has been spread over frequency ordinates 0.0583 and 0.0667. 

Moreover, there is also some power spread to other neighboring Fourier 

frequency ordinates adjacent to ordinates 0.0583 and 0.0667 in the 

passband region, although at a diminishing rate. Importantly, the low 

frequency component has been successfully expunged from the 

bandpass filtered data series – there is no power corresponding to 

Fourier frequency ordinate 0.025.  The impact of ‘smearing’ distortions 

can be discerned from Figure 11 which contain plots of the DFT filtered 

data series against the unsynchronized true ‘bandpass’ periodicity. 

Figure 11 about here. 

It is apparent that, apart from some noticeable minor amplitude 

deviations at both endpoints, the filtered data series seems to track the 

true ‘bandpass’ periodicity remarkably well. Upon closer inspection, there 
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is some slight differences between the two series – for example, the ‘dot 

points’ for both series do not coincide exactly although they are typically 

very close to each other, except at the endpoints. 

The results of applying the bandpass HP filter to the data series are 

documented in Figure 12. We adopt the same values for λ  as in the 

previous section, that is, 3225.215=lowλ  and 1=highλ . Also observe that, 

because we have included the results from the BK filter in this Figure, we 

once again lose 16 data points from the beginning and end of the filtered 

data series. 

Figure 12 about here. 

It is evident from inspection of Figure 12 that the bandpass HP filtered 

data series (i.e. the ‘BPHP’ series) does not reproduce the exact pattern of 

the true target ‘bandpass’ periodicity generated from (6).  As was the case 

in the previous section, the HP filtering operation has continued to 

generate distortions, producing significant amplitude based deviations in 

particular.  

The cause of these distortions can be found by inspecting the 

periodogram of the HP filtered data series documented in Figure 10 – i.e. 

the ‘BPHP’ series. Some leakage from the low frequency periodicity is 

apparent in the periodogram of the HP filtered data series.  This is 

particularly evident with the power associated with Fourier frequency 

ordinate 0.025.  The other key feature is the smearing effect identified in 



 22

Figure 10 in the passband around the ordinates 0.0583 and 0.0667.  In 

this case, however, there are qualitative differences when compared to 

the pattern observed for the DFT filter.  Specifically, in the case of HP 

filter, Fourier frequency ordinate 0.0667 has significantly more relative 

power when compared with ordinate 0.0583. 

 The results obtained from application of the BK filter to the artificial 

data series are also presented in Figure 12 – i.e. the ‘BK(16)’ series. It is 

evident that the filtered data series obtained from the BK filter does not 

reproduce the exact pattern of the target bandpass periodicity generated 

by (6).  In common with the bandpass HP filter, the BK filter also 

generates some distortions. 

The cause of these can be found by inspecting the periodogram of the 

BK filtered data series in Figure 10 – i.e. the ‘BK’ series. Some leakage 

from the low frequency periodicity is evident.  However, comparison of 

results for HP and BK filters indicate that the extent of the leakage is 

marginally less in the latter. This finding is consistent with the 

comparable results cited in the previous section. The smearing effect is 

evident in the bandpass region. The observed pattern around the 0.0583 

and 0.0667 Fourier frequency ordinates more closely matches the 

qualitative pattern observed with the DFT filter compared to the 

bandpass HP filter. 
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To summarize, the substantive conclusions in the previous section 

continue to hold.  First, the DFT algorithm is markedly superior in 

extracting the true ‘bandpass’ periodicity.  It is the only filter that comes 

close to extracting the true target ‘bandpass’ periodicity, provided that we 

ignore some minor ‘smearing’ distortions at the endpoints of the filtered 

data. For the most part (i.e. away from the endpoints), these distortions 

are very small in magnitude. In contrast, the other two filters could not 

competently extract the ‘bandpass’ periodicity with continued 

contamination arising from the low frequency periodicity. 

7 RESULTS ASSOCIATED WITH THE STOCHASTIC STATIONARY 

GAUSSIAN PERIODIC MODEL (7)-(8)B 

In this section, we investigate the ability of the filters to extract the 

‘bandpass’ periodicity when the deterministic periodicities (5)-(6) are 

embedded in a stationary Gaussian noise process according to the 

stochastic model [(7)–(8)b].  The test procedure employed is, once again, 

to apply the various bandpass filters to the artificial data series outlined 

in Figure 6 and assess the extent to which the properties of the 

deterministic ‘bandpass’ periodic data, outlined in Figure 4, appear to be 

reflected in the respective filtered data series. The embedding of (7) in 

stationary Gaussian noise is expected to generate some deviations in the 

waveform of the filtered data series when compared with the 

deterministic periodicity generated by (6).  As such, we are now in a 
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world where the filtered data series can only provide an approximation to 

the true deterministic ‘bandpass’ periodicity. Examination of filter 

performance is now based on standard summary measures of goodness 

of fit in order to ascertain how ‘close’ the filtered series approximates the 

target ‘bandpass’ periodicities. Again a key consideration is whether the 

filtering operations generate data series in which the low frequency 

periodicity associated with (5) is successfully expunged. 

In order to give some perspective on tracking performance, Figures 13 

and 14 contain plots of the results of applying the DFT filter to the 

synchronized and unsynchronized input data respectively. In both 

figures, the data associated with the true ‘bandpass’ periodicity (6) and 

the bandpass filtered data from the DFT filter are displayed together. 

Figure 13 about here. 

Figure 14 about here 

It is apparent from inspection of Figures 13 and 14 that the two filtered 

data series broadly track the true periodicities, although the Gaussian 

noise does generate some deviations in terms of both amplitude and 

phase variation of the DFT filtered data series, compared with the 

deterministic ‘bandpass’ periodicities. The tracking observed in Figures 

13 and 14 is comparable to that found in earlier sections. So more plots 

will not add any meaningful information about comparative filter 

performance. Instead, conventional goodness-of–fit measures can help. 
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In order to assess whether or not the bandpass filter operation has 

ignored the low frequency periodicity generated by (5), we inspect the 

periodograms of the filtered data series documented in Figures 15 and 16 

for the unsynchronized and synchronized cases, respectively. 

Figure 15 about here. 

Figure 16 about here 

In relation to the DFT filtered series, (i.e. the ‘DFT’ series), the low 

frequency component has been successfully expunged from both filtered 

data series – there is no power corresponding to Fourier frequency 

ordinate 0.025. For the synchronized case (Figure 16), the main power in 

the filtered series occurs at Fourier frequency ordinates 0.0667 and 

0.1583 respectively.  The first ordinate is the Fourier frequency ordinate 

that is synchronized with the 2f  value of 0.0667 used in (6).  For the 

unsynchronized case, corresponding to 2f  = 0.0625 (Figure 15), the spike 

associated with the synchronized case has disappeared. Instead, the true 

periodicity of 0.0625 has been spread over frequency ordinates 0.0583 

and 0.0667.  The power identified at Fourier frequency 0.1583 is also 

evident in the unsynchronized case as well. 

The power at the second Fourier frequency ordinate 0.1583 is most 

probably an artifact of the noise process which, when combined with the 

deterministic periodicity, produces a harmonic effect.  This was not 

observed in Sections 5 or 6 and must, therefore, be an artifact of the 
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noise process and not of the underlying deterministic process. These 

periodicities are all clearly in the passband range.  It should also be 

noted that, for both cases, the noise process, more generally, produces 

small amounts of power at all Fourier frequencies in the passband. This 

contrasts with the lack of ‘power’ outside of the passband.  In fact, it is 

clear from inspection of both figures that the DFT filtered data series has 

no discernible power associated with any Fourier frequencies falling 

outside of the passband region, thus clearly encapsulating the desired 

ideal response in the stopband region. 

 In order to assess whether the bandpass HP filter has expunged the 

low frequency periodicity from the filtered data series, we inspect the 

periodograms associated with the unsynchronized and synchronized 

cases documented in Figures 15 and 16. 

It is apparent that some leakage from the low frequency periodicity is 

evident in the periodograms of the HP filtered data series – i.e. the ‘BPHP’ 

series.  There is power associated with Fourier frequency ordinate 0.025, 

which corresponds to the “low” frequency 1f  periodicity in (5) and which 

clearly falls outside the passband range.  In common with the result 

cited for the DFT filter, there is also power in the filtered series at Fourier 

frequency ordinates 0.067 and 0.1583, which both fall within the 

passband region for the synchronized case (Figure 16).  For the 

unsynchronized case (Figure 15), the true periodicity is once again 
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smeared around the Fourier frequency ordinates of 0.0583 and 0.0667.   

However, as found in the previous section, the Fourier frequency 

ordinate 0.0667 has significantly more relative power when compared 

with ordinate 0.0583, thus producing a different qualitative pattern to 

that found for the unsynchronized case.  Finally, there is also power at 

ordinate 0.1583 for the unsynchronized case. 

The results obtained from applying the BK filter to the unsynchronized 

and synchronized input data series are also outlined in Figures 15 and 

16 - .i.e. the ‘BK(16)’ series.  It is evident from inspection of these figures 

that some leakage from the low frequency periodicity is apparent in the 

periodogram of the BK filtered data series especially at Fourier frequency 

ordinate 0.025. This result was also found in both figures for the 

bandpass HP filter. In addition, and, in common with the evidence cited 

for the other filters, there is also power in the filtered series at Fourier 

frequency ordinates 0.067 and 0.1583 for the synchronized case.  In the 

case of the unsynchronized case, the true periodicity is once again 

smeared over the ordinates 0.0583 and 0.0667 with more relative weight 

being given to ordinate 0.0583. Note that this pattern differs qualitatively 

from the patterns observed for both DFT and bandpass HP filters.  In 

particular, the pattern does not closely follow that observed for the DFT 

filter, as was the case in the previous section. 

In general, it was difficult to assess the relative performance of each 

filter by simply ’eye-balling’ plots of the filtered data series relative to the 
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respective target periodicity.  Because of the Gaussian noise in (7), all 

filtered data series display some amplitude and phase variation when 

compared with the target periodicities.  However, some substantive 

points can be drawn, particularly from the periodogram analysis of the 

filtered data from the various filters. First, the DFT filter most clearly 

encapsulates the ideal response desired in a bandpass filter - there is no 

power associated with components outside the passband.  This contrasts 

with the HP and BK filters which have some power at frequency 0.025, 

reflecting contamination of the filtered data series by the low frequency 

periodicity generated by (5). Second, the DFT filter seems to generate the 

most pronounced power in the passband at frequency 0.0667 for the 

synchronized case.  This suggests that the DFT filter continues to pass 

on the deterministic “passband” component more completely to the 

filtered data series when compared to the other filters. However, the DFT 

filter also generates the most relative power at frequency 0.1583, 

although this “harmonic” effect also holds in relative terms for the other 

filters as well.  As such, the DFT filter has the most sensitive reaction to 

the heightened volatility in the input data generated by the Gaussian 

noise variates   Third, assessment of the power of the periodogram of the 

BK filter, against that of the HP filter, indicates that it seems to pass less 

of the low frequency periodicity to the filtered data series. 

Because of the apparent amplitude and phase variation in the filtered 

data generated by all filters considered, we use conventional goodness-
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of–fit measures to get some idea of the comparative performance of the 

different filters.  In this approach, the target periodicity is viewed 

heuristically as the dependent variable in a regression model while the 

filtered data series from the various filters is treated as the predicted 

value from the regression model itself. In this context, the filter that 

produces the best fit according to the standard goodness-of-fit criteria 

would be deemed to be best. 

The goodness-of-fit results for the synchronized case are outlined in 

Table 7.1. It should be noted that the first two rows of the Table relating 

to the mean and standard deviation are applied to a calculated residual 

series, determined as the difference between the filtered data series and 

the true ‘bandpass’ periodicity.  All the other statistics are calculated 

directly from the two respective data series. 2  It is apparent from 

inspection of Table 7.1 that the DFT based filter produces the best fit.  

The DFT filter (column 2) has the smallest standard deviation, largest 

correlation coefficient, highest coefficient of determination (R Square) and 

smallest standard error. 

Comparison of columns 2 and 3 of Table 7.1 clearly demonstrates that 

the DFT filter is superior on every statistical count to the bandpass HP 

                                       

2 All statistics are calculated using the following worksheet functions in Excel – 

“AVERAGE”, “STDEV”, “CORREL”, “RSQ” and “STEYX”. 
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filter. We cannot strictly compare the results for the BK filter (column 4) 

with the results for the DFT and HP filters listed in the earlier columns in 

Table 7.1 because of the differences in length of data series.  However, in 

column 5 we include the set of statistics calculated for the DFT filter with 

endpoint adjustments so that the dimension of the data series matches 

that for the BK filter.  It is evident from inspection of the last two 

columns that the BK filter does marginally better than the DFT filter on 

every count except for the standard deviation.  However, this result is at 

the expense of the loss of data points and comparison of column 2 and 5 

in Table 7.1 indicate that the additional data points seem to improve the 

fit associated with the DFT filter on all statistical counts – in this context, 

the end points are not redundant. 

The results for the unsynchronized data are listed in Table 7.2.  It is 

evident that our conclusions concerning the DFT filter continue to hold 

on all statistical counts, as do those relating to the bandpass HP filter.  

In relation to the BK and adjusted DFT data listed in the last two 

columns of Table 7.2, it is apparent that the DFT filter now achieves the 

best results on all statistical counts. Moreover, examination of columns 2 

and 5 of Table 7.2 indicates that the endpoint data contribute to the 

overall goodness-of-fit. The endpoints are not redundant data. 
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8 CONCLUSIONS 

In this article, we have investigated the ability of bandpass filters, 

widely used in economics, to extract a known periodicity while passing 

over another periodicity that lies outside the passband.  The bandpass 

filters employed in this article included a DFT filter together with the 

popular filters proposed in Hodrick and Prescott (1997) and Baxter-King 

(1999). 

In order to investigate the cycle extraction properties of the various 

filters, we conducted simulations involving artificial data generated from 

a model of a periodic process that is deterministic or embedded in 

stationary Gaussian noise. The ‘complete’ periodicity was defined as the 

sum of two orthogonal periodicities.  The first was a low frequency 

periodicity that was deliberately designed to fall outside the passband 

while the second periodicity was designed to fall within the passband. 

We also distinguished between cases where the true periodicity was 

synchronized with a Fourier frequency ordinate in the passband.  This is 

the case when the ‘true’ periodicity is a harmonic of the fundamental 

frequency or equivalently, when the true cycle is a sub-multiple of the 

length of the underlying data series.  It was established that, under this 

particular circumstance, the DFT filter works optimally.  The second case 

dealt with is when the true periodicity is not synchronized with a Fourier 

frequency ordinate.  In this case, it was demonstrated that the true 

periodicity is smeared between the Fourier frequency ordinates bordering 

it and this effect is capable of producing distortions between the true 

periodicity and the filtered data series, especially at the start and end 
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points of the filtered data series.  However, apart from the endpoints, the 

distortions appeared to be very small in magnitude. 

The major conclusion is that the DFT algorithm is superior in extracting 

the true ‘bandpass’ periodicity, when compared with the other two filters 

considered.  This finding is supported by both visual inspection of charts 

(for the purely deterministic periodicities outlined in Sections 5 and 6) 

and from goodness-of-fit measures for the case when the deterministic 

periodicities were embedded in Gaussian noise (Section 7).  This general 

conclusion is also supported by the periodograms of the various filtered 

data series. In particular, inspection of the periodograms of the bandpass 

filtered data series, derived from the bandpass HP and BK filters, 

indicated contamination from low frequency periodicities that should 

have been excluded.  It was only in the DFT case that the low frequency 

periodicity was completely expunged from the bandpass filtered data. 
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Table 7.1.  Summary Statistics of Goodness of Fit of Synchronized 

Deterministic Target Bandpass Periodicity [Eq (8)-(9)b: 0667.02 =f ] and 

Filtered Data Obtained From Various Bandpass Filters  

 DFT  Bp HP BK(16) DFT(16) 

Mean 0.0000 0.0000 -0.0404 -0.0123 

Std Dev 0.6182 0.6778 0.6660 0.6332 

Correlation 0.7276 0.6216 0.6872 0.6784 

R Squared 0.5294 0.3863 0.4722 0.4602 

Std Error 0.4891 0.5586 0.5240 0.5299 

 

 

Table 7.2.  Summary Statistics of Goodness of Fit of 

Unsynchronized Deterministic Target Bandpass Periodicity [Eq (8)-

(9)b: 0625.02 =f ] and Filtered Data Obtained From Various Bandpass 

Filters  

 DFT Bp HP BK(16) DFT(16) 

Mean -0.0419 -0.0419 -0.0392 -0.0013 

Std Dev 0.6346 0.7154 0.6699 0.6333 

Correlation 0.6496 0.5328 0.5895 0.6247 

R Squared 0.4220 0.2839 0.3476 0.3902 

Std Error 0.5412 0.6024 0.5759 0.5567 
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Figure 1.  Plot of Frequency Response of Bandpass Filter for Unit Impulse - Sample Size = 120, 
Passband = (0.042,0.167)
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Figure 2.  Plot of Inverse DFT (Dirichlet Function) of Bandpass Filter for Unit Impulse - Sample 
Size=120, Passband = (0.042,0.167) 
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Figure 3.  Plot of Deterministic Low Frequency Periodicity [Eq (5) and (8)a] - Sample Size = 120, amp1 
= 5.0, f1 = 0.025
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Figure 4.  Plot of Deterministic BandPass Periodicity  [Eq (6) and (8)a] - Sample Size = 120,  
amp2=1.0,  f2 = 0.0625 (unsynchronized case) and f2=0.0667(synchronized case),  respectively
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Figure 5.  Plot of Artificial Deterministic Periodicity [Eq (7) and (8)a] - Sample Size = 120, Various Eq 
(6): f2 = 0.0625 (unsynchronized case) and f2= 0.0667 (synchronized case), respectively
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Figure 6.  Plot of Artificial Stochastic Periodicity [Eq (7)-(8)b] - Sample Size = 120, Various Eq (6): f2 = 
0.0625 (unsynchronized case) and f2 = 0.0667 (synchronized case), respectively 
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Figure 7.  Comparison of DFT BandPass Filtered Data Series From Deterministic Model [Eq (7) and 
Eq (8)a] and Actual (Target) Synchronized Bandpass Periodicity Data [Eq (6)] - Sample Size = 120
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Figure 8.  Plots of Periodograms of Bandpass Filtered Data Series Derived From Synchronized 
Deterministic Model [Eq (7) and Eq (8)a]:  DFT, HP and BK Filters - Sample Size=120, Passband = 

(0.042,0.167)

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

35.0000

0.0
00

0

0.0
16

7

0.0
33

3

0.0
50

0

0.0
66

7

0.0
83

3

0.1
00

0

0.1
16

7

0.1
33

3

0.1
50

0

0.1
66

7

0.1
83

3

0.2
00

0

0.2
16

7

0.2
33

3

0.2
50

0

0.2
66

7

0.2
83

3

0.3
00

0

0.3
16

7

0.3
33

3

0.3
50

0

0.3
66

7

0.3
83

3

0.4
00

0

0.4
16

7

0.4
33

3

0.4
50

0

0.4
66

7

0.4
83

3

0.5
00

0

Frequency

Va
lu

e DFT
BPHP
BK

 

 



 39

 

Figure 9.  Comparison of HP and BK BandPass Filtered Data Series From Deterministic Model [Eq (7) 
and Eq (8)a] and Actual (Target) Synchronized Bandpass Periodicity Data [Eq (6)] - Sample Size = 120
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Figure 10.  Plots of Periodograms of Bandpass Filtered Data Series Derived From Unsynchronized 
Deterministic Model [Eq (7) and Eq (8)a]:  DFT, HP and BK Filters - Sample Size=120, Passband = 

(0.042,0.167)
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Figure 11.  Comparison of DFT BandPass Filtered Data Series From Deterministic Model [Eq (7) and 
Eq (8)a] and Actual (Target) Unsynchronized Bandpass Periodicity Data [Eq (6)] - Sample Size = 120
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Figure 12.  Comparison of HP and BK BandPass Filtered Data Series From Deterministic Model [Eq 
(7) and Eq (8)a] and Actual (Target) Unsynchronized Bandpass Periodicity Data [Eq (6)] - Sample Size 

= 120
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Figure 13.  Comparison of DFT BandPass Filtered Data Series From Stochastic Model [Eq (7)-(8)b]) and Synchronized Deterministic 
"Bandpass" Data [Eq (6):  f=0.0667] - Sample Size=120
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Figure 14.  Comparison of DFT BandPass Filtered Data Series From Stochastic Model [Eq (7) and Eq (8)b] and Unsynchronized 
Deterministic "Bandpass" Periodicity  [Eq (6): f2=0.0625] - Sample Size=120
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Figure 15.  Plots of Periodograms of Unsynchronized Bandpass Filtered Data Series Derived From Stochastic  Model [Eq (7) and 
Eq (8)b]: DFT, HP and BK  Filters - Sample Size = 120, Passband = (0.042,0.167)
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Figure 16.  Plots of Periodograms of Synchronized Bandpass Filtered Data Series Derived From Stochastic  Model [Eq (7) and Eq 
(8)b]: DFT, HP and BK  Filters - Sample Size = 120, Passband = (0.042,0.167)
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