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Randomly Modulated Periodic Signals in 
Australia’s National Electricity Market

John Foster*, Melvin J. Hinich** and Phillip Wild***

In this article, we use half hourly spot electricity prices and load data 
for the National Electricity Market (NEM) of Australia for the period from 
December 1998 to August 2007 to test for randomly modulated periodicity. In 
doing so, we apply signal coherence spectral analysis to the time series of half 
hourly spot prices and megawatt-hours (MWh) load demand from 7/12/1998 to 
31/08/2007 using the FORTRAN 95 program developed by Hinich (2000). We 
detect relatively steady weekly and daily cycles in load demand but relatively 
more unstable cycles in prices.

1. iNtRoductioN

A crucial feature of price formation in electricity spot markets is the 
instantaneous nature of the product sold. The physical laws that determine the 
delivery of electricity across a transmission grid require a synchronization and 
balancing of the input of power at generating points and output of power at de-
mand points together with some allowance for transmission loss associated with 
electrical resistance and the heating up of conductors. Across the grid, production 
and consumption decisions must be perfectly synchronized, without any capability 
for storage, otherwise the quality of supply can be severely compromised. More-
over, while electricity generation and transmission may be viewed as yielding a 
commodity, its ultimate consumption at the retail end is a service. Thus, the task 
of either the grid operator or the short-term market mechanism is to continuously 
monitor the demand process and allocate generating capacity, in line with fluctua-
tions in demand (Bunn 2004, 2, Hinich, Czamanski, Dormaar, and Serletis 2007).
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Recently, researchers have applied innovative methods in modelling spot 
wholesale electricity prices and loads. See, for example, Zhang and Dong (2001), 
Higgs and Worthington (2003), Deng and Jiang (2004), León and Rubia (2004), 
Serletis and Andreadis (2004), Higgs and Worthington (2005), Lu, Dong and Li 
(2005), and Worthington, Kay-Spratley, and Higgs (2005). Our contribution here 
is to offer forecasters a better understanding of the periodicity of prices and load 
in this market through the use of the Randomly Modulated Periodicity (RMP) 
model, recently proposed by Hinich (2000), Hinich and Wild (2001, 2005) and 
applied to the Alberta Electricity market in Hinich, Czamanski, Dormaar, and Ser-
letis (2007). We use this parametric statistical model to study the Australian Na-
tional Electricity Market (NEM) wholesale spot market. We examine half hourly 
spot electricity prices (defined in terms of megawatt-hours (MWh)) and MWh 
load (demand) over the period from 7/12/1998 to 31/08/2007. 

Our principal objective in this article is to test for periodic structure in 
electricity spot prices and load data in order to establish whether the nature of the 
underlying periodicity permits us to competently predict the spot price and load 
far into the future.1 As such, we are particularly concerned with the stability or 
predictability of the periodic structure of price and load time series data. 

Our approach differs from the conventional conception of periodicity 
in the time series and signal processing literature which utilizes a deterministic 
periodicity (sinusoid) possibly embedded in additive noise. If the noise process 
is a symmetric or uniform noise process, then the periodicity will have a constant 
waveform, (Li and Hinich 2002, 1, Hinich and Wild 2005, 1557-1558). 

Our approach also differs from the conventional approaches that have 
been used to model time series with changing periodic structure that can be classi-
fied as models with either ‘seasonal’ unit roots or ‘season-dependent’ parameters – 
see (Li and Hinich 2002, 1-2) for an overview of these two different approaches.2 

In undertaking this, we employ a univariate approach, although, from 
both an economic and forecasting perspective, there is likely to be interest in 
broader questions concerning possible relationships between the spot price of 
electricity and electricity load and other covariates such as prices of primary com-
modities like coal and natural gas, which enter as input costs in electricity genera-
tion, economic activity and weather patterns. We see such wider investigations as 
complementary to the kind of statistical analysis undertaken here. 

The paper is organized as follows. In Section 2 we discuss the Australian 
National Electricity Market (NEM). In Sections 3 and 4 we briefly outline the RMP 

1. Judgement about the validity of the approach will ultimately rest upon its comparative forecast 
performance which will be the subject of a latter paper. This article is concerned with assessing the 
stability of the periodic structure of the data in question which will underpin forecasting methods 
employed in the latter article. The proposed forecasting methods are non-trivial and innovative, being 
based on ‘hetrodyning’ techniques.

2. Our approach is more closely related to the second approach mentioned above (‘season-
dependent’ parameter models). The main differences are that we operate in the frequency domain and 
the approach to dimension reduction is different from the time domain methods identified in (Li and 
Hinich 2002, 2). 
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model proposed by Hinich (2000) and Hinich and Wild (2001, 2005). In Section 
5 we briefly discuss the data used and highlight some transformations that were 
made to the spot price electricity data in order to implement the RMP test. In sec-
tion 6, we test for randomly modulated periodicity in half hourly electricity prices 
and MWh load demand. In the final section, we provide concluding comments.

2. AuStRAliAN NAtioNAl ElEctRicity MARkEt (NEM)

The electricity market as a whole encompasses both supply and demand 
side interactions. The Australian market for electricity is structured as a gross pool 
arrangement. This market structure is ideal for electricity because of its peculiar 
properties. First, electricity cannot be stored and supply must balance demand 
instantaneously through time. Second, because one unit of electricity is indistin-
guishable from all other units, it is not possible to determine from which generator 
the unit of electricity was produced (NEMMCO 2005, 4).

The electricity industry involves generation, transmission, distribution 
and retail sale activities. More than 90% of Australia’s electricity production is 
generated from burning coal, gas and oil. In 2003, statistics relating to generation 
by fuel type indicated that approximately 58.5% of generation occurred by burn-
ing black coal, 25.9% by brown coal, 7.7% by natural gas, 7.6% by Hydro and 
0.3% by oil products (NEMMCO 2005, 4). 

The NEM commenced operation as a de-regulated wholesale market in 
New South Wales, Victoria, Queensland, the Australian Capital Territory (ACT) 
and South Australia in December 1998. In 2005, Tasmania joined as a sixth re-
gion. Operations are essentially based on six interconnected regions that broadly 
follow state boundaries. The market is extensive in scope with trade in electricity 
accounting for around $7 billion in 2003, meeting the demand of around 8 million 
consumers (NEMMCO 2005, 4). 

The National Electricity Market Management Company Limited (NEM-
MCO) was established in 1996 to administer and manage the NEM. NEMMCO 
is a company under the Corporations law and operates on a break-even basis by 
recovering the costs of operating the NEM as well as it own operational costs by 
levying fees against market participants (NEMMCO 2005, 5). More generally, the 
structure of ownership of NEM infrastructure assets is complicated, with assets 
being owned and operated by both state governments (i.e. public ownership) and 
by private businesses (i.e. private ownership). In 2003, public (government) own-
ership encompassed around 64% of generation assets, 57% of transmission assets, 
50% of distribution assets and 55% of retail assets (NEMMCO 2005, 5).

In Australia, the wholesale spot market for electricity is a key component 
of the NEM. The spot market can be viewed as being derived from a continu-
ous auction market in which asks and bids are entered by generators and users 
of electricity to generate five minute (market clearing) dispatch prices that are 
broadcast to market participants in real time. Towards the end of the five-minute 
interval, market clearing is achieved through an economic dispatch algorithm that 
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selects the cheapest available resource from the offers submitted by market par-
ticipants to meet incremental changes in demand experienced by the real power 
system. The official trade (spot) prices and positions are determined by taking half 
hour averages of the five-minute dispatch prices and loads. The half hourly aver-
aged prices are those received by generators and paid by purchasers of electricity 
(Outhred 2000, 3-4, NEMMCO 2005, 6-7).

Currently, NEM rules set a maximum spot price of $10 000 per mega-
watt hour. This is the maximum price that generators can bid into the market. This 
maximum price is also called the Value of Lost Load (VOLL) and is automati-
cally activated whenever NEMMCO pursues load shedding in order to ensure that 
supply and demand balance and that the quality of supply meets pre-determined 
security and reliability standards (NEMMCO 2005, 6, 9). 

There is also provision for price capping behavior associated with a Cu-
mulative Price Threshold (CPT) that serves to cap potential financial risk in the 
NEM during periods of high sustained spot prices. This mechanism is triggered 
if the cumulative price in a single region over the preceding 336 trading intervals 
in a rolling seven-day period reaches some pre-specified threshold level. If this 
occurs, the maximum spot price is reduced from VOLL to an administered cap 
level and this arrangement continues until the conditions that caused the trading 
interval prices to increase in the sustained way have subsequently passed. The cur-
rent CPT is set at $150000 and the administered Cap is set at $100/MWh in peak 
times and $50/MWh in off peak times (AEMC 2006, Sect. 4.3).3 The administered 
price arrangements also include provisions to transfer price caps to interconnected 
regions (see special NEMMCO Briefing Paper cited in reference section). 

Another feature of the NEM is location-dependent prices and capacity 
for inter-regional trade. High-voltage transmission lines, called interconnectors, 
transport electricity between different NEM regions. Interconnectors can be used 
to import electricity into a region when demand is higher than can be met by lo-
cally based generators or when prices in an adjoining region are low enough to 
displace the locally based sources of supply. The flow of power between regions 
is also limited by the physical transfer capacity of the interconnectors themselves. 
Currently, interconnectors link (and regional trade is possible between) Queen-
sland and New South Wales; New South Wales, Snowy Mountains and Victoria; 
Victoria and South Australia; and Victoria and Tasmania (NEMMCO 2005, 17). 
Therefore, in summary, the wholesale market can be viewed as being divided into 
market regions with the possibility of price variability between regions or even 
between sub-regions, possibly reflecting flow and other networking constraints 
operating at or within regional boundaries. These effects combine to determine 
the relationship between spot prices at regional reference nodes (Outhred 2000, 
3-4). 

3. A CPT of $150000 is equivalent to an average spot price of $446.43/MWh over the previous 
seven days. Moreover, if the average price in a region over the previous seven days was $32/MWh, 
then a VOLL price for seven hours would be needed before the CPT was exceeded, thereby inducing 
an administered price period (NEMMCO Briefing Paper, Sect. 2).
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The design of the NEM is fully symmetric so that, in principle, both 
demand and supply side participants have equal opportunity to set and respond 
to changes in market prices. However, experience indicates that few demand-side 
resources are formally bid in the market, weakening the price-elasticity effects of 
the market mechanism, increasing price volatility and possibly permitting sup-
pliers to exercise market power and extract monopoly rents.4 Instead, NEMMCO 
feeds demand forecasts directly into the economic dispatch process itself (NEM-
MCO 2005, 11). This operation might also serve to weaken links between com-
mercial decision-making underpinning the demand side of the market and physi-
cal processes underpinning the supply side of the market. One implication is that 
this may introduce demand forecast risks that are not managed commercially, thus 
increasing spot price volatility (Outhred 2000, 3). 

In 2003, statistics on electricity consumption by industrial sector indi-
cated that the largest end-user group was industry, accounting for approximately 
46.9% of total electricity consumption. This was followed by the residential sec-
tor, which accounted for 26.7%, and the commercial sector, that accounted for 
around 23.8%. Consumption of electricity by the agriculture and transport sectors 
was much smaller in scope, accounting for only 1.5% and 1.1% respectively. In 
terms of the total number of actual customers, approximately 87.7% of the cus-
tomers were defined as domestic users, while 10.7% of customers were defined 
as businesses and finally 1.6% of total customers were defined as rural customers 
(NEMMCO 2005, 4).

In general, demand patterns tend to vary from region to region depend-
ing upon such factors as population, temperature and industrial and commercial 
needs. However, for a business day experiencing average temperatures, a typi-
cal level of demand across the NEM would be approximately 21000 megawatts 
(NEMMCO 2005, 11).5 In this normal situation, there is ample supply available 
to service this demand.

Electricity demand also tends to be cyclical in nature, with demand being 
lower in the spring and autumn than in summer and winter. Australia has higher 
summer consumption patterns, due to higher temperatures that cause increased 
use of air-conditioners, particularly by the residential sector. However, severe sup-
ply pressures only emerge when there are extremely high prevailing temperatures 
- this is expected to occur during a few days in summer each year. Moreover, be-
cause peak demand does not arise simultaneously in all regions, total supply can 
typically be shared between regions using the interconnected power network. 

Electricity demand in Australia also has a daily and weekly cycle. The 
peak hourly load in Australia has two distinct peaks that are generated by do-

4. An anonymous referee mentioned that one reason why few demand side resources are bid into 
the market is because of metering difficulties – for instance, it is likely that most people would not 
even consider monitoring energy consumption even if ‘smart meters’ become more widely available, 
thus producing very low short run own price elasticity of demand.

5. It should be noted that an anonymous referee pointed out that the average demand level should 
be approximately 29000MW’s, instead of the 21000MW’s cited in the above-mentioned NEMMCO 
publication.
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mestic activity. Demand tends to be low in the early morning hours and begins to 
increase, with a first peak period occurring between 7.00 am and 9.00am. Demand 
then tends to drop off, flattening out between 11.30 am to 1.30pm before starting 
to climb once again. The second peak occurs between 4.00pm and 7.00pm. De-
mand also follows a weekly cycle and tends to be higher on weekdays than during 
the weekends.

Finally, demand for electricity is very price inelastic in Australia. Be-
cause NEMMCO feeds load estimates directly into the economic dispatch pro-
cess, there is no effective price bidding by demand side participants. The demand 
forecast determines the quantity of electricity that has to be supplied while the 
supply side of the economic dispatch process determines the price and supply 
schedules that the generators are willing to offer in order to meet the prevailing 
demand. Therefore, within the context of the economic dispatch algorithm used 
in NEM, the supply side participants essentially determine both the five minute 
dispatch prices and half hour trade (spot) prices. Estimates of the own price elas-
ticity of electricity demand generally reflect this with elasticity estimates gener-
ally accepted to be around -0.13 to -0.15, hence signifying a very inelastic demand 
profile (Simshauser and Docwra 2004, 289). However, some large industrial cus-
tomers can agree to curtail consumption at high spot prices, introducing some 
price sensitivity at higher spot price levels – this practice is termed “demand side 
participation” (NEMMCO 2005, 16).

Volatile spot prices have encouraged trading in financial instruments (i.e. 
especially in the form of specialized contractual arrangements) linked to future 
spot prices in order to hedge positions against the risk that sharp rises in spot price 
of electricity might pose to the bottom lines of wholesale market participants. 
Hedge contracts are designed to operate independently of both the market and 
NEMMCO’s administration. They play no role in balancing supply and demand 
and are not regulated under any NEM rules or provisions (NEMMCO 2005, 24). 
In fact, the actual price paid for the bulk of the electricity is mainly determined 
by contract (rather than the spot market) prices and the net effect of participants’ 
contract and spot market exposures. In particular, it should be recognized that the 
spot market is a wholesale market and about only 30-40% of the price paid by do-
mestic and business consumers for electricity supply is accounted for by the direct 
(wholesale) cost of the energy. In this context, the wholesale energy cost can be 
broadly interpreted as the cost of generation or the price that retailers ultimately 
pay for the power, including hedging, risk management and other transaction 
costs. Additional retail based charges include mark-ups associated with the costs 
of network usage, retail charges associated with providing customer services such 
as billing and call centre services, profit mark-up and goods and services taxes 
(GST) (Outhred 2000, 5-6, Energy Consumers’ Council 2003, 21-23, NEMMCO 
2005, 7). However, spot price volatility and forecasts of future spot prices play a 
crucial role in underlying risk assessment and possible hedging strategies that are 
subsequently adopted by wholesale market participants. 
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3. coNcEPt oF RAMdoMly ModultAtEd PERiodicity

The RMP model allows one to capture the intrinsic variability of a cycle 
and the signal coherence function enables one to quantify the amount of random 
variation in the complex amplitude of each component of the Fourier representa-
tion of the time series. 

A discrete-time random process x(t
n
)  is an RMP with period T = Nt, 

sampling interval t, t
n
 = nt and kth Fourier frequency f
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4. SigNAl cohERENcE SPEctRAl ANAlySiS

 In order to provide a measure of the modulation relative to the underly-
ing periodicity, we employ the concept of signal coherence spectrum (SIGCOH) 
introduced in Hinich (2000) and extended in Hinich and Wild (2005) to the case of 
detecting an RMP in additive stationary noise. Conceptually, the signal coherence 
measure can be interpreted as quantifying the degree of association between the 
modulation and underlying periodicity for each given frequency.

A common approach to processing time series with a periodic structure 
is to partition the observations into M frames, each of length T = Nt, where t is 
the sampling interval (typically set to unity). Therefore, there is exactly one wave-
form in each sampling frame. The periodic component of the time series is then 
simply the mean component of the source time series y(t

n
). 

It is possible to interpret the concept of signal coherence as measuring 
how stable the time series is at each frequency across the frames. It follows that 
for each Fourier frequency f

k
 = k/T  the value of the signal coherence function is 

given by
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k
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κ(k) ≠ 0. This implies that the mean value of the 
component at frequency f

k
 is zero so that all of the variation across the frames at 

that frequency is a pure noise process (no coherence).
The signal coherence function is estimated from actual data by taking 

the Fourier transform of the mean frame and for each of the M frames. The mean 
frame is given by
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SIGCOH can be viewed as measuring the amount of “wobble” in each frequency 
component of the source time series y(t

n
) about its amplitude when s

k
 > 0 in (4). 

An AMS of 1.0 is equal to a signal coherence value of 0.71 and an AMS of 0.5 is 
equal to a signal coherence value of 0.45.

 The SIGCOH estimator introduced in Hinich (2000) is
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used to falsify the null hypothesis mentioned above. The tests across the frequen-
cy band are approximately independently distributed tests and the statistic ˆ ρ2

y
(k) 

is the most straightforward way to place statistical confidence on SIGCOH point 
estimates. 

We can also construct a joint test based on the distribution of the CUSUM 
statistic
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5. dAtA ANd ASSociAtEd tRANSFoRMAtioNS

Recall from the discussion in Section 1 that we use half hourly spot 
electricity prices and load data for the period from 7/12/1998 to 31/08/2007.6 
This produced a resulting sample size of 142,873 observations. We apply the tests 
to time series load and price data from New South Wales (NSW), Queensland 
(QLD), Victoria (VIC) and South Australia (SA). It should be noted that we do not 
investigate the properties of the data associated with Snowy Mountains Hydro be-
cause it does not service its own distinct NEM region, but instead, exports power 
to New South Wales and Victoria.

In applying the RMP tests, we convert all data series to continuous com-
pounded returns by applying the formula:

 y(t)
r(t) = ln 

 1————2 *100 ,        (10)
 y(t–1)

where:
•	 r(t) is the continuous compounded return for time period “t”; and
	•	y(t) is the source price or load time series data.

In order to apply (10), y(t) cannot take negative or zero values. How-
ever, it became evident that for Queensland, Victoria and South Australia, there 
was the occasional occurrence of negative spot prices. The negative spot prices 
represented payments made by generator operators to NEMMCO in order to keep 
their generators running in circumstances when resulting power supplied would 
exceed the prevailing load requirements. This principally reflected the time and 
costs involved in shutting down and then subsequently re-starting generating plant 
(especially for base-load) when demand increased. These negative price episodes 
are outlined in Appendix A. 

In the presence of negative prices, some transformations had to be made 
to the respective price series to remove negative prices before we were able to ap-
ply (10) to convert the data to returns. Two particular scenarios were adopted. The 
first scenario involved setting any values which were negative or zero to the previ-
ous non-negative value. This was implemented by the following decision rule:

 ≤ 0, x(t) = y(t–1)
if y(t) =                                        ,    (11)
 else, x(t) = y(t)

where y(t) is the source time series data and x(t) is the transformed data series. 

6. The half hourly load and spot price data were sourced from files located at the following web 
addresses: http://www.nemmco.com.au/data/aggPD_1998to1999.htm#aggprice1998link, http://www.
nemmco.com.au/data/aggPD_2000to2005.htm#aggprice2000link, and http://www.nemmco.com.au/
data/aggPD_2006to2010.htm#aggprice2006link.
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The second method involved applying a linear interpolation routine to the trans-
formed series x(t) obtained from the application of (11). This was implemented 
using the following decision rule:

       [x(t–1) + x(t+1)]
 ≤ 0, z(t) =  ————————                      2 
if y(t) =                                                        ,    (12)
 else,      z(t) = x(t) [= y(t)]

where z(t) is the new transformed data.
Under both schemes, if y(t) > 0, both x(t) and z(t) inherit the original 

value corresponding to y(t). However, if y(t) ≤ 0, then x(t) inherits the previous 
value y(t–1) while z(t) inherits the mid-point value between the positive (by con-
struction) values x(t–1) and x(t+1). In the present situation, the x(t–1) and x(t+1) 
values correspond to the original values y(t–1) and y(t+1) subsequently producing 
a value for z(t) that is the average of the two source data points y(t–1) and y(t+1) - 
that is, a linearly interpolated point between the two source series data points.

The results of applying these transformations in the case of the negative 
prices can be discerned from inspection of Appendix A. For example, compare the 
last three columns in Appendix A, which list the results from applying (11) and 
(12) respectively together with the original negative price values. In the results 
presented in the next section, we adopt the transformation associated with the 
linear interpolation scheme outlined in (12).

6. iS RMP PRESENt iN NEM PRicE ANd loAd dAtA?

Here, we do not pre-whiten the half hourly electricity demand and spot 
price data, as is done in, for example, Hinich, Czamanski, Dormaar, and Ser-
letis (2007). The pre-whitening operation is designed to make the data have a 
flat spectrum. Furthermore, because the AR operation is a linear transformation, 
it cannot create coherence. However, an improperly applied de-trending method 
can potentially reduce signal coherence. Thus, to avoid this possibility, we apply 
the RMP tests to the data produced from (12) which is analysed for the presence 
of a randomly modulated periodicity with a fundamental period of one week (or 
equivalently 336 half hours). 

Recall from Section (2) that one ‘stylised fact’ is that the load curve has 
a weekly and daily cycle. However, our interest is in the stability of this waveform 
– that is, the extent to which the cycles in the demand are ‘wobbly’. In the case of 
the spot electricity price time series, we would not expect to see as well-defined 
weekly or daily cycles when compared to the load data. Instead, the time path of 
spot prices would be expected to exhibit many spikes, indicating higher volatility 
and stronger mean-reverting behaviour than commonly associated with the load 
data.

We applied signal coherence spectral analysis to the data, using the FOR-
TRAN 95 Spectrum program developed by Hinich. The first key result is that, 
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in all cases, the joint RMP test defined by (9) signified very strong rejection of 
the null hypothesis of no periodicity (i.e. of pure noise) at the 0.5% level of sig-
nificance. In all cases, the associated p-value was 0.00000. These test results are 
available from the authors upon request. 

The Power and SIGCOH spectrums of the load (demand) time series for 
NSW, QLD, VIC and SA are shown in Figures 1-4, respectively. In constructing 
these graphs, we adopted a floor of 0.0 for the power spectrum. As such, power 
spectrum values [i.e. decibels (dB)] less than zero are not plotted. This was done 
for convenience in order to promote clarity of view in relation to the horizontal 
axis. In fact, the incidence of negative power spectrum (dB) results are marginal 
in scope and certainly do not affect our conclusions. 

In a similar way, a floor of 0.45 was adopted for the SIGCOH spectrum 
results. This particular decision was based on the observation made in Section 4 
that a SIGCOH value of 0.45 corresponds to an AMS value of 0.5. While adopting 
the floor value of 0.45 for SIGCOH spectrum is subjective, we can interpret it as 
implying that cycles with AMS below 0.5 signify a level of random variation in 
waveform at a particular frequency that will render as questionable the ‘predict-
ability’ of that component for forecasting purposes.

 It is apparent from inspection of these figures that two broad conclusions 
can be made in relation to assessment of SIGCOH spectrum results. First, in all 
four cases, the weekly cycle has a high degree of coherence with the SIGCOH 
values being greater than 0.9 for NSW, VIC and QLD. In fact for these three par-
ticular states, the second harmonic (of 168 half hours) also has SIGCOH values 
greater than 0.9 and together represent the most coherent components for these 
particular data series. In the case of SA, however, the SIGCOH values for these 
two cycles are very significant in terms of their comparative magnitudes but are 
now less than 0.9 in magnitude – see Figure 4. This indicates that the weekly cycle 
has a marginally less well-defined periodic structure than is the case with the three 
other states – there is marginally more “wobble” in the weekly cycle in the case of 
SA when compared to NSW, QLD and VIC. 

The other noticeable feature is that there appears to be mid and high fre-
quency structure evident for all four states. There is evidence of SIGCOH values 
greater than 0.6 appearing at the mid and high frequency end of SIGCOH spec-
trum of all four states except possibly for NSW in the mid-band frequency range 
– see Figure 1. This type of structure was not evident, for example, in the study of 
the Alberta market cited in Hinich, Czamanski, Dormaar, and Serletis (2007). 

To investigate this issue further, plots of conventional power spectra 
(log spectrum in decibels) for the load data are also documented in Figures 1-4 
as well. It is apparent from inspection of the power spectrum results outlined 
in these figures that a well-defined harmonic structure appears in power spectra. 
Moreover, there is no evidence of a trend in the data – the power spectra do not 
exhibit the large spectral power at low frequencies commonly associated with data 
containing trends. The evident ‘flatness’ of the power spectra also indicates that 
pre-whitening operations were not needed in these cases. When combined with 
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the signal coherence results, these results give some indication that at least some 
of the shorter period components could be expected to meaningfully contribute to 
the forecasting of load demand. 

Finally, evidence of the possible role that short period components might 
play in forecasting load demand can also be discerned from inspections of the 
periodograms of the state load time series data that are displayed in Figure 5. 
The periodogram of the data series can be calculated as the squared modulus (or 

Figure 1. Plot of Power and Sigcoh Spectra for NSW NEM  
half hourly load data

Figure 2. Plot of Power and Sigcoh Spectra for Qld NEM  
half hourly load data



118 / The Energy Journal

square of the absolute value) of the Discrete Fourier Transform (DFT) for each 
Fourier frequency of the mean frame divided by the number of sample points. In 
constructing Figure 5, we once again impose a floor of 5 on the periodogram val-
ues. As such, only periodogram values greater than or equal to 5 are plotted.

It is apparent from inspection of Figure 5 that, in the cases of NSW, QLD 
and SA, there does not appear to be much (if any) periodic structure at either mid 
or high frequency bands for the range established by the above-mentioned floor. 

Figure 3. Plot of Power and Sigcoh Spectra for Vic NEM  
half hourly load data

Figure 4. Plot of Power and Sigcoh Spectra for SA NEM  
half hourly load data
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This contrasts with the case of VIC where there appears to be more pronounced 
periodic structure associated with the mid frequency band and, to a lesser extent, 
the high frequency band. Thus, when compared with the SIGCOH and power 
spectra evidence cited above, the periodogram evidence raises some question over 
how much the shorter period components might be expected to contribute to the 
forecasting of load in at least three of the states considered – notably, NSW, QLD 
and SA.

The Power and SIGCOH spectrums of the spot price time series data for 
NSW, QLD, VIC and SA are documented in Figures 6-9, respectively. We again 
adopt the same “floor” values for both the power and SIGCOH spectra that were 
outlined above in relation to Figures 1-4. 

It is apparent from inspection of these figures that a number of broad 
conclusions can be made in relation to SIGCOH spectrum results. First, in all four 
cases, the weekly cycle once again has a significant degree of coherence. Howev-
er, the SIGCOH values are of a smaller order of magnitude than was the case with 
the load data with values being typically between 0.65 and 0.75 in magnitude. 
This indicates that there is more “wobble” in the spot price weekly waveform 
pattern than was the case for the load data. Furthermore, the low frequency band 
tends to have greater overall coherence than the mid and high frequency bands of 
the Signal Coherence spectra. Second, as was the case with the load data, there ap-
pears to be mid and high frequency structure in SIGCOH of spot price data for all 
four states. In particular, there is evidence of SIGCOH values greater than 0.6 ap-
pearing at the mid and high frequency end of SICGOH spectrum of all four states 
although the results for SA are clearly of a smaller order of magnitude and density 
(see Figure 9) when compared with the other states of NSW, QLD and VIC. 

Figure 5. Plot of the Periodograms of State NEM half hourly  
load demand data
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Plots of conventional power spectra (in decibels) of the spot price data 
are also documented in Figures 6-9. It is apparent from inspection of the power 
spectrum results in these figures that a well-defined harmonic structure is, once 
again, evident. Furthermore, the power spectra results for all four states are quite 
flat, indicating that no trend is present in the data and no pre-whitening operation 
is necessary. When these results are combined with the SIGCOH results, we have 
some indication that some of the shorter period components could reasonably be 

Figure 6. Plot of Power and Sigcoh Spectra for NSW NEM  
half hourly Spot Price data

Figure 7. Plot of Power and Sigcoh Spectra for Qld NEM  
half hourly Spot Price data
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expected to contribute to the forecasting of spot price movements, even though the 
structure is less stable than was the case for the load demand data. 

Additional evidence for the possible role that short period components 
might play in forecasting spot prices is discernable from inspections of the peri-
odograms of the State spot price data that are displayed in Figure 10. In construct-
ing Figure 10, we imposed a floor of 20 on the periodograms. As such, only peri-
odogram values greater than or equal to 20 are actually plotted. It is apparent from 

Figure 8. Plot of Power and Sigcoh Spectra for Vic NEM  
half hourly Spot Price data

Figure 9. Plot of Power and Sigcoh Spectra for SA NEM  
half hourly Spot Price data
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inspection of Figure 10 that in the cases of NSW, QLD and VIC there appears to 
be some periodic structure at mid and particularly high frequency bands. Assess-
ment of results associated with SA indicates that the short period structure is of a 
slightly lower order of magnitude when compared with the other three states. In 
general, for all four states, this apparent high frequency periodicity could be in-
terpreted as reflecting the greater degree of volatility in the spot price series when 
compared with the load data. 

Therefore, the evidence indicates that some of the shorter period compo-
nents might be expected to contribute to the forecasting of spot prices in all four 
states. The more marked high frequency periodicity associated with the spot price 
data would most likely reflect both the marked volatility and mean reversion prop-
erties of this data when compared to the load data. This is particularly apparent 
for the states of NSW, QLD and VIC. However, the SIGCOH values associated 
with the spot price data are generally of a smaller order of magnitude when com-
pared with corresponding values from the load data. This provides support for the 
proposition that the weekly and daily cycles in the spot price data are not as well 
defined or as stable as the cyclical structure associated with the load data.

We also conducted a sensitivity analysis in order to ascertain whether 
the apparent upward meanshift in spot prices in all NEM markets occurring after 
January 2007 had any noticeable effect on the results cited above. This was ac-
complished by calculating the spectral results mentioned above for the sample 
ending at 31 January 2007 and comparing those results with the results obtained 
when the sample was extended until the end of August 2007. This latter sample 
contains the meanshift in spot prices that arose after January 2007 that was asso-
ciated with capacity constraints attributable to drought induced water restrictions 

Figure 10.   Plot of the Periodograms of State NEM half hourly  
Spot Price data
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on hydro generation and, more importantly, base-load coal fired plant closures in 
Queensland. 

Comparative assessment of the results for the two separate samples indi-
cates that the qualitative conclusions cited above have not changed in any appre-
ciable way – overlaying graphs of the spectral results for both sets of samples that 
support this conclusion are available from the authors upon request.

A major implication arising from the above conclusions is that the mean 
properties of both the load and spot price data for all states considered are peri-
odic. While this conclusion would be reasonably expected for the load data, the 
strength of the mean periodicity in the spot price data is particularly noticeable 
and will have implications for modelling spot price dynamics. Specifically, spot 
price dynamics are typically modelled using GARCH or jump diffusion mod-
els. However, the mean components of both GARCH and stochastic jump dif-
fusion processes are not periodic (see Ball and Torous (1983, 1985), Higgs and 
Worthington 2005, Worthington, Kay-Spratley and Higgs 2005 and Lin and Lin 
2007). However, the above results indicate that a (periodic) mean plus volatility 
model for spot prices forecasting could have advantages over existing approaches 
and would seem to warrant further research.

The nature of the periodicities outlined above also pose problems for 
estimation using conventional time series methods outlined in (Lim and Hinich 
2002, 1-2), for example. The plots of periodiograms and power spectra for all data 
series do not contain the power (spikes) at low frequency or harmonic frequencies 
we would associate with ‘seasonal’ unit root processes. 

Second, the significant but imperfect signal coherence outlined in the 
SIGCOH plots of the data series indicate that some wobble exists at these compo-
nents which would pose problems for estimation and forecasting based upon con-
ventional season-dependent parameter methods (Lim and Hinich 2002, 2). If the 
periodic components were estimated by a least squares fit of Fourier frequencies 
sines and cosines the modulations would be included in the residuals. The modu-
lations are random effect in the amplitudes and thus conventional linear methods 
cannot capture the variation in the complex amplitude of the waveform structure 
of the mean periodicities. The nature of the periodicity would seem to require 
alternative estimation and forecasting methodologies. The authors have devised 
a new statistical methodology for parametric estimation and forecasting of RMP 
processes based on heterodyning that will allow us to model the imperfectly co-
herent part of the mean periodicity. 

Finally, it is evident from inspection of the Figures mentioned above 
that some differences arise from state to state. This is particularly the case for 
the mid-frequency components of the load data (see Figures 3 and 5) and spot 
price data (to a less degree - see Figures 8 and 10) associated with Victoria when 
compared with the other states. The results cited above can be viewed as defining 
a set of empirical characteristics derived from load and spot price data published 
by NEMMCO for each respective state that can be exploited when constructing 
forecasts for each respective state. The univariate analysis employed in the article, 
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however, does not (and cannot) convey any precise information about what factors 
are generating particularly the differences observed for Victoria. Given that the 
load profiles are linked to demand forecasts from demand side participants operat-
ing in the Victorian market, it could represent differences in forecast methodolo-
gies used in forecasting load profiles that are subsequently passed to NEMMCO. 
However, whatever the cause, the lack of precise knowledge about this does not 
preclude the use and exploitation of ‘RMP’ information embedded in the data in a 
univariate forecasting context. 

7. coNcluSioNS

We have applied signal coherence spectral analysis to the time series of 
half hourly spot prices and megawatt-hours (MWh) load demand for the principal 
states of NSW, QLD, VIC and SA, which make up the NEM in Australia. 

We found that electricity load demand has a significant amount of high 
coherence, with both the weekly and daily cycles being stable. The mean values 
at each half hour of the daily demand yield reasonably good forecasts for the next 
week provided there is no unusual event such as extreme weather conditions.

On the other hand, electricity prices had a lower overall order of co-
herence in the weekly and daily cycles reflecting a less stable relationship. This 
means, in turn, that forecast errors will tend to have a higher error variance. 

The other noticeable feature is that there was evidence of mid and high 
frequency (short period) structure for both the load and, more especially, the spot 
price data. In the latter case, this was interpreted as reflecting the greater volatility 
and tendency for mean-reversion associated with the spot price data when com-
pared to the load data. This result can be contrast with the nature of the conclu-
sions made in Hinich, Czamanski, Dormaar, and Serletis (2007) in relation to the 
Alberta electricity market. 

A major implication arising from the results is that the mean properties 
of the spot price data were determined to be periodic. Typically, spot price dynam-
ics are modelled using GARCH or stochastic jump diffusion models. However, 
the mean components of both GARCH and stochastic jump diffusion processes 
are not periodic. This would suggests that a (periodic) mean plus volatility model 
for spot prices forecasting could have advantages over existing approaches and 
warrant further research.

Furthermore, the nature of the waveform structure associated with RMP 
periodicities pose particular problems for forecasting and new estimation and fore-
casting methodologies would seem to be required. This is also an area warranting 
further research although methods based on ‘heterodyning’ seem promising. 

In this article, we have adopted a univariate time series approach when 
analysing NEM electricity spot prices and load data. However, from both an eco-
nomic and statistical forecasting perspective, particular interest is in developing 
multivariate models capable of explaining and linking spot prices movements 
and load demand to other covariates such as primary inputs, industrial and other 
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economic activity and weather patterns. Therefore, there is much to be gained 
in generalizing and developing the statistical technology for forecasting electric-
ity demand, as advocated in Hinich, Czamanski, Dormaar, and Serletis (2007). 
Within the context of generalizing the RMP approach used in this article, the 
theory and methods outlined in Li and Hinich (2002), in particular, warrants fur-
ther research.
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APP ENdiX A. iNcidENcE oF NEgAtiVE SPot  
ElEctRicity PRicES 

QuEENSlANd
 t       (A)   (B)   (c)

26546  13/06/2000  5:00  18.5400009  18.5400009  18.5400009 
26547  13/06/2000  5:30  18.5400009  18.2700005  -2.91000009 
26548  13/06/2000  6:00  18.0000000 18.0000000  18.0000000

27507  3/07/2000  5:30  17.7099991  17.7099991  17.7099991 
27508  3/07/2000  6:00  17.7099991  17.8449993  -4.28000021 
27509  3/07/2000  6:30  17.9799995  17.9799995  17.9799995

33114  28/10/2000  2:30  16.3600006  16.3600006  16.3600006 
33115  28/10/2000  3:00  16.3600006  16.3349991  -84.3899994 
33116  28/10/2000  3:30  16.3099995  16.3099995  16.3099995

37136  20/01/2001  1:00  13.6400003  13.6400003  13.6400003 
37137  20/01/2001  1:30  13.6400003  16.0799999  -20.8099995 
37138  20/01/2001  2:00  18.5200005  18.5200005  18.5200005

75253  25/03/2003  5:30  15.2299995  15.2299995  15.2299995 
75254  25/03/2003  6:00  15.2299995  13.7700005  -156.139999 
75255  25/03/2003  6:30  12.3100004  12.3100004  12.3100004

97203  24/06/2004  12:30  19.7000008  19.7000008  19.7000008 
97204  24/06/2004  13:00  19.7000008  19.7000008  -150.460007 
97205  24/06/2004  13:30  19.7000008  19.7000008  19.7000008

113717  3/06/2005  13:30  16.0100002  16.0100002  16.0100002 
113718  3/06/2005  14:00  16.0100002  15.7550001  -153.100006 
113719  3/06/2005  14:30  15.5000000  15.5000000  15.5000000

116456  30/07/2005  15:00  13.5400000  13.5400000  13.5400000 
116457  30/07/2005  15:30  13.5400000  12.8000002  -3.47000003 
116458  30/07/2005  16:00  12.0600004  12.0600004  12.0600004
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121399  10/11/2005  14:30  32.6300011  32.6300011  32.6300011 
121400  10/11/2005  15:00  32.6300011  25.6450005  -145.279999 
121401  10/11/2005  15:30  18.6599998  18.6599998  18.6599998

127724  22/03/2006 9:00  21.4899998  21.4899998  21.4899998 
127725  22/03/2006 9:30  21.4899998  17.1199989  -326.700012 
127726  22/03/2006 10:00  12.7500000  12.7500000  12.7500000

128476  7/04/2006  1:00  14.1899996  14.1899996  14.1899996 
128477  7/04/2006  1:30  14.1899996  13.4849997  -155.850006 
128478  7/04/2006  2:00  12.7799997  12.7799997  12.7799997

128524  8/04/2006  1:00  12.7799997  12.7799997  12.7799997 
128525  8/04/2006  1:30  12.7799997  11.4099998  -155.919998 
128526  8/04/2006  2:00  10.0400000  10.0400000  10.0400000

131848  16/06/2006  7:00  18.7600002  18.7600002  18.7600002 
131849  16/06/2006  7:30  18.7600002  18.7150002  -148.649994 
131850  16/06/2006  8:00  18.6700001  18.6700001  18.6700001

143397  11/02/2007  21:30  15.7700005  15.7700005  15.7700005 
143398  11/02/2007  22:00  15.7700005  16.1100006  -156.929993 
143399  11/02/2007  22:30  16.4500008  16.4500008  16.4500008

147598  10/05/2007  10:00  67.0599976  67.0599976  67.0599976 
147599  10/05/2007  10:30  67.0599976  66.5449982  -286.779999 
147600  10/05/2007  11:00  66.0299988 66.0299988  66.0299988

VictoRiA
 t       (A)   (B)   (c)

23722  15/04/2000  8:00  15.6300001  15.6300001  15.6300001 
23723  15/04/2000  8:30  15.6300001  13.1399994  -161.669998 
23724  15/04/2000  9:00  10.6499996  10.6499996  10.6499996

32832  22/10/2000  5:30  5.82999992  5.82999992  5.82999992 
32833  22/10/2000  6:00  5.82999992  6.60500002  -305.779999 
32834  22/10/2000  6:30  7.38000011  7.38000011  7.38000011

53842  3/01/2002  4:00  11.4099998  11.4099998  11.4099998 
53843  3/01/2002  4:30  11.4099998  11.4150000  -155.940002 
53844  3/01/2002  5:00  11.4200001  11.4200001  11.4200001

68435  3/11/2002  4:30  7.07999992  7.07999992  7.07999992 
68436  3/11/2002  5:00  7.07999992  4.05499983  -228.009995 
68437  3/11/2002  5:30  1.02999997  1.02999997  1.02999997

68782  10/11/2002  10:00  10.3800001  10.3800001  10.3800001 
68783  10/11/2002  10:30  10.3800001  13.3549995  -5.09999990 
68784  10/11/2002  11:00  16.3299999  16.3299999  16.3299999

97334  27/06/2004  6:00  10.9399996  10.9399996  10.9399996 
97335  27/06/2004  6:30  10.9399996  7.63499975  -163.020004 
97336  27/06/2004  7:00  4.32999992  4.32999992  4.32999992

97861  8/07/2004  5:30  16.5100002  16.5100002  16.5100002 
97862  8/07/2004  6:00  16.5100002  20.3950005  -329.910004 
97863  8/07/2004  6:30  24.2800007  24.2800007  24.2800007
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103353  30/10/2004  15:30  16.7999992  16.7999992  16.7999992 
103354  30/10/2004  16:00  16.7999992  15.9449997  -153.610001 
103355  30/10/2004  16:30  15.0900002  15.0900002  15.0900002

103395  31/10/2004  12:30  16.9300003  16.9300003 16.9300003 
103396  31/10/2004  13:00  16.9300003  17.9599991  -153.000000 
103397  31/10/2004  13:30  18.9899998  18.9899998  18.9899998

117405  19/08/2005  9:30  34.9399986  34.9399986  34.9399986 
117406  19/08/2005  10:00  34.9399986  31.4599991  -142.020004 
117407  19/08/2005  10:30  27.9799995  27.9799995  27.9799995

142812  30/01/2007  17:00  66.4400024  66.4400024  66.4400024 
142813  30/01/2007  17:30  66.4400024  52.2550011  -104.300003 
142814  30/01/2007  18:00  38.0699997  38.0699997  38.0699997

142997  3/02/2007  13:30  60.1599998  60.1599998  60.1599998 
142998  3/02/2007  14:00  60.1599998  61.3250008  -0.85000002 
142999  3/02/2007  14:30  62.4900017  62.4900017  62.4900017

143669  17/02/2007  13:30  72.5699997  72.5699997  72.5699997 
143670  17/02/2007  14:00  72.5699997  90.8349991  -83.5299988 
143671  17/02/2007  14:30  109.099998  109.099998  109.099998

144191  28/02/2007  10:30  60.4700012  60.4700012  60.4700012 
144192  28/02/2007  11:00  60.4700012  62.4550018  -6.34999990 
144193  28/02/2007  11:30  64.4400024  64.4400024  64.4400024

149963  28/06/2007  16:30  174.240005  174.240005  174.240005 
149964  28/06/2007  17:00  174.240005  249.470001  -36.2599983 
149965  28/06/2007  17:30  324.700012  324.700012  324.700012

149968  28/06/2007  19:00  1561.13000  1561.13000  1561.13000 
149969  28/06/2007  19:30  1561.13000  912.505005  -12.7500000 
149970  28/06/2007  20:00  263.880005  263.880005  263.880005

South AuStRAliA
 t       (A)   (B)   (c)

68435  3/11/2002  4:30   7.71999979  7.71999979  7.71999979 
68436  3/11/2002  5:00   7.71999979  4.42000008  -246.570007 
68437  3/11/2002  5:30   1.12000000  1.12000000  1.12000000

70229  10/12/2002 13:30  21.6800003  21.6800003  21.6800003 
70230  10/12/2002 14:00  21.6800003  20.5650005  -6.03000021 
70231  10/12/2002 14:30  19.4500008  19.4500008  19.4500008

70331  12/12/2002 16:30  15.4300003  15.4300003  15.4300003 
70332  12/12/2002 17:00  15.4300003  18.1149998  -9.98999977 
70333  12/12/2002 17:30  20.7999992  20.7999992  20.7999992

71767  11/01/2003 14:30  27.2999992  27.2999992  27.2999992 
71768  11/01/2003 15:00  27.2999992  29.1399994  -61.9500008 
71769  11/01/2003 15:30  30.9799995  30.9799995  30.9799995

92017  8/03/2004  11:30  26.1800003  26.1800003  26.1800003 
92018  8/03/2004  12:00  26.1800003  4096.42480  -822.450012 
92019  8/03/2004  12:30  8166.66992  8166.66992  8166.66992 
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136414  19/09/2006  10:00  32.6899986  32.6899986  32.6899986 
136415  19/09/2006  10:30  32.6899986  35.0900002  -160.369995 
136416  19/09/2006  11:00  37.4900017  37.4900017  37.4900017

142501  24/01/2007  5:30  35.2299995  35.2299995  35.2299995 
142502  24/01/2007  6:00  35.2299995  33.9899979  -476.859985 
142503  24/01/2007  6:30  32.7500000  32.7500000  32.7500000

144191  28/02/2007  10:30  62.8800011  62.8800011  62.8800011 
144192  28/02/2007  11:00  62.8800011  64.9499969  -133.110001 
144193  28/02/2007  11:30  67.0199966  67.0199966  67.0199966

147486  8/05/2007  2:00  24.2600002  24.2600002  24.2600002 
147487  8/05/2007  2:30  24.2600002  17.1499996  -4.00000000 
147488  8/05/2007  3:00  10.0400000  10.0400000  10.0400000

149221  13/06/2007  5:30  35.2700005  35.2700005  35.2700005 
149222  13/06/2007  6:00  35.2700005  21.3800011  -32.8400002 
149223  13/06/2007  6:30  7.48999977  7.48999977  7.48999977

149656  22/06/2007  7:00  112.750000  112.750000  112.750000 
149657  22/06/2007  7:30  112.750000  197.369995  -35.2299995 
149658  22/06/2007  8:00  281.989990  281.989990  281.989990

149917  27/06/2007  17:30  104.120003  104.120003  104.120003 
149918  27/06/2007  18:00  104.120003  349.799988  -119.040001 
149919  27/06/2007  18:30  595.479980  595.479980  595.479980

149963  28/06/2007  16:30  96.6299973  96.6299973  96.6299973 
149964  28/06/2007  17:00  96.6299973  84.0350037  -93.3199997 
149965  28/06/2007  17:30  71.4400024  71.4400024  71.4400024

149968  28/06/2007  19:00  328.890015  328.890015  328.890015 
149969  28/06/2007  19:30  328.890015  275.345001  -6.48000002 
149970  28/06/2007  20:00  221.800003 221.800003  221.800003

151957  9/08/2007  5:30  8.26000023  8.26000023  8.26000023 
151958  9/08/2007  6:00  8.26000023  8.26000023  -3.23000002 
151959  9/08/2007  6:30  8.26000023  19.0400009  -888.780029 
151960  9/08/2007  7:00  29.8199997  29.8199997  29.8199997

Legend: 
(A) Set to previous positive value: Equation (11) 
(B) Interpolated Scenario: Equation (12) 
(C) Actual (Source) Data 
T – Time index – i.e. 26546 observation or data point.

Notes: (1) The last entry for Victoria and the fifth entry for South Australia produces significant 
differences between the two methods adopted to remedy negative prices incidence.
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